All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 134147 by Ñï= last updated on 28/Feb/21
limn→∞∫01xsin(2πnx)dx=?
Answered by mathmax by abdo last updated on 28/Feb/21
letun=∫01xsin(2πnx)dxbypartsforn>0un=[−x2πncos(2πnx)]01+∫0112πncos(2πnx)dx=14π2n2[sin(2πnx)]01=0⇒limn→+∞un=0
Answered by mnjuly1970 last updated on 28/Feb/21
method12πnx=tΩ=limn→∞14π2nn∫02πntsin(t)dt=limn→∞14π2n2[−tcost+sin(t)(t)]02πn=limn→∞−12πn=0method2f:[a,b]→Ris∗Reimanintegrable∗then:limt→∞∫abf(x)sin(xt)dx=0reiman−lebesguetheorem...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com