Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134147 by Ñï= last updated on 28/Feb/21

lim_(n→∞) ∫_0 ^1 xsin (2πnx)dx=?

limn01xsin(2πnx)dx=?

Answered by mathmax by abdo last updated on 28/Feb/21

let u_n =∫_0 ^1  xsin(2πnx)dx  by parts for n>0  u_n =[−(x/(2πn))cos(2πnx)]_0 ^1 +∫_0 ^1 (1/(2πn))cos(2πnx)dx  =(1/(4π^2 n^2 ))[sin(2πnx)]_0 ^1  =0 ⇒lim_(n→+∞) u_n =0

letun=01xsin(2πnx)dxbypartsforn>0un=[x2πncos(2πnx)]01+0112πncos(2πnx)dx=14π2n2[sin(2πnx)]01=0limn+un=0

Answered by mnjuly1970 last updated on 28/Feb/21

  method 1     2πnx=t      Ω=lim_(n→∞) (1/(4π^2 n^n ))∫_0 ^( 2πn) tsin(t)dt  =lim_(n→∞) (1/(4π^2 n^2 ))[−tcost+sin(t)(t)]_0 ^(2πn)   =lim_(n→∞) ((−1)/(2πn))=0      method2   f:[a,b]→R is ∗Reiman integrable∗  then:     lim_(t→∞) ∫_a ^( b) f(x)sin(xt)dx=0      reiman−lebesgue theorem...

method12πnx=tΩ=limn14π2nn02πntsin(t)dt=limn14π2n2[tcost+sin(t)(t)]02πn=limn12πn=0method2f:[a,b]RisReimanintegrablethen:limtabf(x)sin(xt)dx=0reimanlebesguetheorem...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com