Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134270 by abdurehime last updated on 01/Mar/21

proof that   { (k),(n) :}}=((k!)/(n!×(k−n)!))

$$\mathrm{proof}\:\mathrm{that} \\ $$$$\left.\begin{cases}{\mathrm{k}}\\{\mathrm{n}}\end{cases}\right\}=\frac{\mathrm{k}!}{\mathrm{n}!×\left(\mathrm{k}−\mathrm{n}\right)!} \\ $$

Commented by mr W last updated on 02/Mar/21

you mean (_n ^k )=((k!)/(n!×(k−n)!)).  {_n ^k } has different meaning. it is the  stirling number of the second kind.  {_n ^k } is the number of ways to divide  k distinct objects into n  non−  empty groups. for example {_2 ^4 }=7.

$${you}\:{mean}\:\left(_{{n}} ^{{k}} \right)=\frac{{k}!}{{n}!×\left({k}−{n}\right)!}. \\ $$$$\left\{_{{n}} ^{{k}} \right\}\:{has}\:{different}\:{meaning}.\:{it}\:{is}\:{the} \\ $$$${stirling}\:{number}\:{of}\:{the}\:{second}\:{kind}. \\ $$$$\left\{_{{n}} ^{{k}} \right\}\:{is}\:{the}\:{number}\:{of}\:{ways}\:{to}\:{divide} \\ $$$${k}\:{distinct}\:{objects}\:{into}\:{n}\:\:{non}− \\ $$$${empty}\:{groups}.\:{for}\:{example}\:\left\{_{\mathrm{2}} ^{\mathrm{4}} \right\}=\mathrm{7}. \\ $$

Commented by mr W last updated on 02/Mar/21

per definition (_n ^k ) is the number of  ways to choose n objects from k  objects.  to choose the first object there are  k ways, to select the second  object there are (k−1) ways. etc. to  select the n−th object, there are  (k−n+1) ways. totally there are  k(k−1)(k−2)...(k−n+1) ways. since  the order of the n objects is not of  concern,  {_n ^k }=((k(k−1)(k−2)...(k−n+1))/(n!))  this can be simplified to  {_n ^k }=((k(k−1)(k−2)...(k−n+1)(k−n)(k−n−1)...1)/(n!(k−n)(k−n−1)...1))  =((k!)/(n!×(k−n)!))

$${per}\:{definition}\:\left(_{{n}} ^{{k}} \right)\:{is}\:{the}\:{number}\:{of} \\ $$$${ways}\:{to}\:{choose}\:{n}\:{objects}\:{from}\:{k} \\ $$$${objects}. \\ $$$${to}\:{choose}\:{the}\:{first}\:{object}\:{there}\:{are} \\ $$$${k}\:{ways},\:{to}\:{select}\:{the}\:{second} \\ $$$${object}\:{there}\:{are}\:\left({k}−\mathrm{1}\right)\:{ways}.\:{etc}.\:{to} \\ $$$${select}\:{the}\:{n}−{th}\:{object},\:{there}\:{are} \\ $$$$\left({k}−{n}+\mathrm{1}\right)\:{ways}.\:{totally}\:{there}\:{are} \\ $$$${k}\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)...\left({k}−{n}+\mathrm{1}\right)\:{ways}.\:{since} \\ $$$${the}\:{order}\:{of}\:{the}\:{n}\:{objects}\:{is}\:{not}\:{of} \\ $$$${concern}, \\ $$$$\left\{_{{n}} ^{{k}} \right\}=\frac{{k}\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)...\left({k}−{n}+\mathrm{1}\right)}{{n}!} \\ $$$${this}\:{can}\:{be}\:{simplified}\:{to} \\ $$$$\left\{_{{n}} ^{{k}} \right\}=\frac{{k}\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)...\left({k}−{n}+\mathrm{1}\right)\left({k}−{n}\right)\left({k}−{n}−\mathrm{1}\right)...\mathrm{1}}{{n}!\left({k}−{n}\right)\left({k}−{n}−\mathrm{1}\right)...\mathrm{1}} \\ $$$$=\frac{{k}!}{{n}!×\left({k}−{n}\right)!} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com