Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 134287 by EDWIN88 last updated on 02/Mar/21

The straight line x+y−1=0 meets the cicle  x^2 +y^2 −6x−8y = 0 at A and B . Then find  the equation of circle of which AB is diameter

$$\mathrm{The}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{x}+\mathrm{y}−\mathrm{1}=\mathrm{0}\:\mathrm{meets}\:\mathrm{the}\:\mathrm{cicle} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{6x}−\mathrm{8y}\:=\:\mathrm{0}\:\mathrm{at}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:.\:\mathrm{Then}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{which}\:\mathrm{AB}\:\mathrm{is}\:\mathrm{diameter} \\ $$

Answered by bramlexs22 last updated on 02/Mar/21

let the requires equation of   circle is C_1 +λℓ = 0 ; then  ⇒x^2 +y^2 −6x−8y+λ(x+y−1)=0  ⇒x^2 +y^2 +(λ−6)x+(λ−8)y−λ=0  with center point at (((6−λ)/2) ,((8−λ)/2))  since the center point lie on line  x+y−1=0 ⇒we find ((6−λ)/2)+((8−λ)/2) =1  ⇒14−2λ = 2 ; λ=6.  therefore the equation of circle  of which AB is diameter ≡  x^2 +y^2 −2y−6 = 0

$$\mathrm{let}\:\mathrm{the}\:\mathrm{requires}\:\mathrm{equation}\:\mathrm{of}\: \\ $$$$\mathrm{circle}\:\mathrm{is}\:\mathrm{C}_{\mathrm{1}} +\lambda\ell\:=\:\mathrm{0}\:;\:\mathrm{then} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{8}{y}+\lambda\left({x}+{y}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\left(\lambda−\mathrm{6}\right)\mathrm{x}+\left(\lambda−\mathrm{8}\right)\mathrm{y}−\lambda=\mathrm{0} \\ $$$$\mathrm{with}\:\mathrm{center}\:\mathrm{point}\:\mathrm{at}\:\left(\frac{\mathrm{6}−\lambda}{\mathrm{2}}\:,\frac{\mathrm{8}−\lambda}{\mathrm{2}}\right) \\ $$$$\mathrm{since}\:\mathrm{the}\:\mathrm{center}\:\mathrm{point}\:\mathrm{lie}\:\mathrm{on}\:\mathrm{line} \\ $$$$\mathrm{x}+\mathrm{y}−\mathrm{1}=\mathrm{0}\:\Rightarrow\mathrm{we}\:\mathrm{find}\:\frac{\mathrm{6}−\lambda}{\mathrm{2}}+\frac{\mathrm{8}−\lambda}{\mathrm{2}}\:=\mathrm{1} \\ $$$$\Rightarrow\mathrm{14}−\mathrm{2}\lambda\:=\:\mathrm{2}\:;\:\lambda=\mathrm{6}. \\ $$$$\mathrm{therefore}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{circle} \\ $$$$\mathrm{of}\:\mathrm{which}\:\mathrm{AB}\:\mathrm{is}\:\mathrm{diameter}\:\equiv \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2y}−\mathrm{6}\:=\:\mathrm{0}\: \\ $$$$ \\ $$

Commented by bramlexs22 last updated on 02/Mar/21

Answered by EDWIN88 last updated on 02/Mar/21

(1)x=1−y ⇒x^2 =1−2y+y^2   (2)1−2y+y^2 +y^2 −6(1−y)−8y=0         2y^2 −4y−5 =0         y^2 −2y−(5/2)=0       (y−1)^2  = (7/2) ;  { ((y_1 =1+((√7)/( (√2))) →x_1 =−((√7)/( (√2))))),((y_2 =1−((√7)/( (√2)))→x_2 =((√7)/( (√2))))) :}  therefore the equation of circle which AB is   diameter ⇒ (x−((√7)/( (√2))))(x+((√7)/( (√2))))+(y−((((√2)+(√7))/( (√2)))))(y−((((√2)−(√7))/( (√2)))))=0  ⇔ x^2 −(7/2)+y^2 −((((√2)−(√7))/( (√2))))y−((((√2)+(√7))/( (√2))))y+(((2−7)/2))=0  ⇔x^2 +y^2 −2y−6 = 0

$$\left(\mathrm{1}\right)\mathrm{x}=\mathrm{1}−\mathrm{y}\:\Rightarrow\mathrm{x}^{\mathrm{2}} =\mathrm{1}−\mathrm{2y}+\mathrm{y}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\mathrm{1}−\mathrm{2y}+\mathrm{y}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{6}\left(\mathrm{1}−\mathrm{y}\right)−\mathrm{8y}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{2y}^{\mathrm{2}} −\mathrm{4y}−\mathrm{5}\:=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{y}^{\mathrm{2}} −\mathrm{2y}−\frac{\mathrm{5}}{\mathrm{2}}=\mathrm{0} \\ $$$$\:\:\:\:\:\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{7}}{\mathrm{2}}\:;\:\begin{cases}{\mathrm{y}_{\mathrm{1}} =\mathrm{1}+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}\:\rightarrow\mathrm{x}_{\mathrm{1}} =−\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}}\\{\mathrm{y}_{\mathrm{2}} =\mathrm{1}−\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}\rightarrow\mathrm{x}_{\mathrm{2}} =\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}}\end{cases} \\ $$$$\mathrm{therefore}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{which}\:\mathrm{AB}\:\mathrm{is}\: \\ $$$$\mathrm{diameter}\:\Rightarrow\:\left(\mathrm{x}−\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}\right)\left(\mathrm{x}+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}\right)+\left(\mathrm{y}−\left(\frac{\sqrt{\mathrm{2}}+\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}\right)\right)\left(\mathrm{y}−\left(\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}\right)\right)=\mathrm{0} \\ $$$$\Leftrightarrow\:\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{7}}{\mathrm{2}}+\mathrm{y}^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}\right)\mathrm{y}−\left(\frac{\sqrt{\mathrm{2}}+\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{2}}}\right)\mathrm{y}+\left(\frac{\mathrm{2}−\mathrm{7}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2y}−\mathrm{6}\:=\:\mathrm{0}\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com