Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 134289 by bramlexs22 last updated on 02/Mar/21

I=∫ (x^n /( (√(ax+b)))) dx  H=∫ (x^4 /( (√(2x+1)))) dx

I=xnax+bdxH=x42x+1dx

Answered by EDWIN88 last updated on 02/Mar/21

I_n = ((2x^n  (√(ax+b)))/((1+2n)a)) − ((2nb)/((1+2n)a)).I_(n−1)

In=2xnax+b(1+2n)a2nb(1+2n)a.In1

Answered by EDWIN88 last updated on 02/Mar/21

H=∫ (x^4 /( (√(2x+1)))) dx   let 2x+1=w^2  ⇒2dx=2w dw ∧ x = ((w^2 −1)/2)  H=(1/(16)) ∫ (((w^2 −1)^4  w)/w) dw =(1/(16)) ∫ (w^2 −1)^4  dw

H=x42x+1dxlet2x+1=w22dx=2wdwx=w212H=116(w21)4wwdw=116(w21)4dw

Answered by mathmax by abdo last updated on 02/Mar/21

I =∫ (x^n /( (√(ax+b))))dx  we do the changement (√(ax+b))=t ⇒ax+b=t^2  ⇒  ax=t^2 −b ⇒x=((t^2 −b)/a)(  we suppose a≠0) ⇒  I =(1/a^n )∫    (((t^2 −b)^n )/t)(((2t)/a))dt =(2/a^(n+1) )∫  (t^2 −b)^n  dt  =(2/a^(n+1) )∫ Σ_(k=0) ^n  C_n ^k  t^(2k) (−b)^(n−k)  dt  =(2/a^(n+1) )Σ_(k=0) ^n  (−b)^(n−k)  C_n ^k  (1/(2k+1))t^(2k+1)  +C  =(2/a^(n+1) )Σ_(k=0) ^n  (((−b)^(n−k)  C_n ^k )/(2k+1))((√(ax+b)))^(2k+1)  +C

I=xnax+bdxwedothechangementax+b=tax+b=t2ax=t2bx=t2ba(wesupposea0)I=1an(t2b)nt(2ta)dt=2an+1(t2b)ndt=2an+1k=0nCnkt2k(b)nkdt=2an+1k=0n(b)nkCnk12k+1t2k+1+C=2an+1k=0n(b)nkCnk2k+1(ax+b)2k+1+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com