All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 134301 by bramlexs22 last updated on 02/Mar/21
Ω=∫0∞x2(1+x2)4dx
Answered by EDWIN88 last updated on 02/Mar/21
replacexby1xyieldsΩ=∫∞0x−2(1+x−2)4.(−x−2dx)=∫0∞x4(x2+4)4dx2Ω=∫0∞x4+x2(x2+1)4dx=∫0∞x2(1+x2)3dxΩ=12∫0∞x2(1+x2)4dx.Applyintegrationbyparts{u=12x⇒du=12dxdv=x(x2+1)3dx⇒v=−x4(1+x2)2Ω=−18x2(1+x2)2∣0∞+∫0∞dx8(1+x2)2Ω=18∫0∞dx(1+x2)2.replacexby1xΩ=18∫∞0(−x−2)(1+x−2)2dx=18∫0∞x2(1+x2)2dxadding⇒2Ω=18∫0∞1+x2(1+x2)2dxΩ=116∫0∞dx1+x2=116arctan(x)]0∞=π32
Answered by Dwaipayan Shikari last updated on 02/Mar/21
∫0∞x2(1+x2)4dx=12∫0∞u12(1+u)4dux2=u=12∫0∞u32−1(1+u)52+32du=12.Γ(32)Γ(52)Γ(4)=112.12.32.12π=π32
Answered by Ñï= last updated on 02/Mar/21
x=tanθΩ=∫0π/2tan2θsec8θsec2θdθ=∫0π/2cos4θsin2θdθ=12B(52,32)=Γ(52)Γ(32)2Γ(4)=32×12×12π2×3×2=π32
Terms of Service
Privacy Policy
Contact: info@tinkutara.com