All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 134391 by bramlexs22 last updated on 03/Mar/21
Givenf(x)=∫0x(t4−t2t2+1)dt.Findminimumvalueoff(x).
Answered by liberty last updated on 03/Mar/21
Givenf(x)=∫0x[t4−t2t2+1]dt.Findminimumvalueoff(x).(∙)df(x)dx=x4−x2x2+1=0x2(x−1)=0→{x=0x=1(∙∙)d2f(x)dx2∣x=1=(4x3−2x)(x2+1)−2x(x4−x2)(x2+1)2>0forx=1sominimumvalueisf(1)(∙∙∙)f(1)=∫01t4−t2t2+1dtf(1)=∫01(t2−2+2t2+1)dtf(1)=[t33−2t+2arctant]01f(1)=13−2+2(π4)=π2−56
Terms of Service
Privacy Policy
Contact: info@tinkutara.com