Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 134418 by mnjuly1970 last updated on 03/Mar/21

          𝛗=∫_0 ^( ∞) (arctan((1/x)))^2 =???

$$ \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \left({arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right)^{\mathrm{2}} =??? \\ $$

Answered by Ñï= last updated on 03/Mar/21

∫(tan^(−1) (1/x))^2 dx=x(tan^(−1) (1/x))^2 +∫(2tan^(−1) (1/x))(x/(1+x^2 ))dx  =x(tan^(−1) (1/x))^2 +ln(1+x^2 )tan^(−1) (1/x)+∫((ln(1+x^2 ))/(1+x^2 ))dx  ⇒φ=∫_0 ^∞ ((ln(1+x^2 ))/(1+x^2 ))dx  x=tan θ  ⇒φ=−2∫_0 ^(π/2) lncosθdθ=−2∙(−(π/2)ln2)=πln2

$$\int\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} {dx}={x}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} +\int\left(\mathrm{2}{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\right)\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={x}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} +{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}+\int\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow\phi=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${x}=\mathrm{tan}\:\theta \\ $$$$\Rightarrow\phi=−\mathrm{2}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {lncos}\theta{d}\theta=−\mathrm{2}\centerdot\left(−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2}\right)=\pi{ln}\mathrm{2} \\ $$

Commented by mnjuly1970 last updated on 03/Mar/21

thank you so much..

$${thank}\:{you}\:{so}\:{much}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com