Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 13449 by Tinkutara last updated on 20/May/17

Four particles A, B, C and D are situated  at the corners of a square ABCD of side  a at t = 0. Each of the particles moves  with constant speed v. A always has its  velocity along AB, B along BC, C along  CD and D along DA. At what time will  these particles meet each other?

$$\mathrm{Four}\:\mathrm{particles}\:{A},\:{B},\:{C}\:\mathrm{and}\:{D}\:\mathrm{are}\:\mathrm{situated} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{corners}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:{ABCD}\:\mathrm{of}\:\mathrm{side} \\ $$$${a}\:\mathrm{at}\:{t}\:=\:\mathrm{0}.\:\mathrm{Each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particles}\:\mathrm{moves} \\ $$$$\mathrm{with}\:\mathrm{constant}\:\mathrm{speed}\:{v}.\:{A}\:\mathrm{always}\:\mathrm{has}\:\mathrm{its} \\ $$$$\mathrm{velocity}\:\mathrm{along}\:{AB},\:{B}\:\mathrm{along}\:{BC},\:{C}\:\mathrm{along} \\ $$$${CD}\:\mathrm{and}\:{D}\:\mathrm{along}\:{DA}.\:\mathrm{At}\:\mathrm{what}\:\mathrm{time}\:\mathrm{will} \\ $$$$\mathrm{these}\:\mathrm{particles}\:\mathrm{meet}\:\mathrm{each}\:\mathrm{other}? \\ $$

Answered by mrW1 last updated on 20/May/17

When the particles move, the distance  between them will be reduced from a  to 0 with the speed v. The time they  need is  t=(a/v)

$${When}\:{the}\:{particles}\:{move},\:{the}\:{distance} \\ $$$${between}\:{them}\:{will}\:{be}\:{reduced}\:{from}\:{a} \\ $$$${to}\:\mathrm{0}\:{with}\:{the}\:{speed}\:{v}.\:{The}\:{time}\:{they} \\ $$$${need}\:{is} \\ $$$${t}=\frac{{a}}{{v}} \\ $$

Commented by Tinkutara last updated on 20/May/17

But can you explain why they will meet?  Since they all are moving with constant  speeds in the same direction along the  sides of a square, they should never  meet.

$$\mathrm{But}\:\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{why}\:\mathrm{they}\:\mathrm{will}\:\mathrm{meet}? \\ $$$$\mathrm{Since}\:\mathrm{they}\:\mathrm{all}\:\mathrm{are}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{constant} \\ $$$$\mathrm{speeds}\:\mathrm{in}\:\mathrm{the}\:\mathrm{same}\:\mathrm{direction}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square},\:\mathrm{they}\:\mathrm{should}\:\mathrm{never} \\ $$$$\mathrm{meet}. \\ $$

Commented by ajfour last updated on 20/May/17

this is simple and good.

$${this}\:{is}\:{simple}\:{and}\:{good}. \\ $$

Commented by ajfour last updated on 20/May/17

the square ABCD  remains a  square but decreases in edge length  and turns about its centre where  the vertices come together, in a   time required for the edge length  to vanish, at a rate=v.  hence t=a/v .

$${the}\:{square}\:{ABCD}\:\:{remains}\:{a} \\ $$$${square}\:{but}\:{decreases}\:{in}\:{edge}\:{length} \\ $$$${and}\:{turns}\:{about}\:{its}\:{centre}\:{where} \\ $$$${the}\:{vertices}\:{come}\:{together},\:{in}\:{a}\: \\ $$$${time}\:{required}\:{for}\:{the}\:{edge}\:{length} \\ $$$${to}\:{vanish},\:{at}\:{a}\:{rate}=\boldsymbol{{v}}. \\ $$$${hence}\:{t}={a}/{v}\:. \\ $$

Commented by mrW1 last updated on 20/May/17

The track of each particle is curve which  has the length a. At every time the  position of the particles is a squar   which rotates and gets smaller and  smaller till a single point.

$${The}\:{track}\:{of}\:{each}\:{particle}\:{is}\:{curve}\:{which} \\ $$$${has}\:{the}\:{length}\:{a}.\:{At}\:{every}\:{time}\:{the} \\ $$$${position}\:{of}\:{the}\:{particles}\:{is}\:{a}\:{squar}\: \\ $$$${which}\:{rotates}\:{and}\:{gets}\:{smaller}\:{and} \\ $$$${smaller}\:{till}\:{a}\:{single}\:{point}. \\ $$

Commented by mrW1 last updated on 20/May/17

Commented by Tinkutara last updated on 20/May/17

Thanks to both mrW1 and ajfour.

$$\mathrm{Thanks}\:\mathrm{to}\:\mathrm{both}\:\mathrm{mrW1}\:\mathrm{and}\:\mathrm{ajfour}. \\ $$

Commented by mrW1 last updated on 20/May/17

I found some pictures in Internet

$${I}\:{found}\:{some}\:{pictures}\:{in}\:{Internet}\: \\ $$

Commented by mrW1 last updated on 20/May/17

Commented by mrW1 last updated on 20/May/17

Answered by ajfour last updated on 20/May/17

component of velocity towards  centre =(v/(√2))   distance to centre =(a/(√2))   they will meet at the centre  in a time t=(((a/(√2)))/((v/(√2)))) =(v/a) .

$${component}\:{of}\:{velocity}\:{towards} \\ $$$${centre}\:=\frac{{v}}{\sqrt{\mathrm{2}}}\: \\ $$$${distance}\:{to}\:{centre}\:=\frac{{a}}{\sqrt{\mathrm{2}}}\: \\ $$$${they}\:{will}\:{meet}\:{at}\:{the}\:{centre} \\ $$$${in}\:{a}\:{time}\:\boldsymbol{{t}}=\frac{\left(\boldsymbol{{a}}/\sqrt{\mathrm{2}}\right)}{\left(\boldsymbol{{v}}/\sqrt{\mathrm{2}}\right)}\:=\frac{\boldsymbol{{v}}}{\boldsymbol{{a}}}\:. \\ $$

Commented by ajfour last updated on 20/May/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com