Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134526 by mohammad17 last updated on 04/Mar/21

Answered by mr W last updated on 05/Mar/21

(1/(1+x))=1−x+x^2 −x^3 +...  ∫(1/(1+x))dx=∫(1−x+x^2 −x^3 +...)dx  =x−(x^2 /2)+(x^3 /3)−(x^4 /4)+...+C  =ln (1+x)+C

11+x=1x+x2x3+...11+xdx=(1x+x2x3+...)dx=xx22+x33x44+...+C=ln(1+x)+C

Commented by mathmax by abdo last updated on 05/Mar/21

sir mrw the formula (1/(1+x))=1−x+x^2 −....is valable for ∣x∣<1  ...!

sirmrwtheformula11+x=1x+x2....isvalableforx∣<1...!

Commented by mr W last updated on 05/Mar/21

yes, i know. basically you are  absolutely right. but both for ∣x∣<1  and for ∣x∣>1 we get the same. so we  can here treat x just as a symbol    despite its concrete values.  here the proof for ∣x∣>1:  ∣x∣>1 ⇒∣(1/x)∣<1  (1/(1+x))=((1/x)/(1+(1/x)))=1−(1/(1+(1/x)))=1−(1−(1/x)+(1/x^2 )−(1/x^3 )+...)  (1/(1+x))=(1/x)−(1/x^2 )+(1/x^3 )−(1/x^4 )+...  ∫(1/(1+x))dx=ln x+((1/x)−(1/(2x^2 ))+(1/(3x^3 ))+...)+C  ∫(1/(1+x))dx=ln x+ln (1+(1/x))+C  ∫(1/(1+x))dx=ln (1+x)+C       (∣x∣>1)

yes,iknow.basicallyyouareabsolutelyright.butbothforx∣<1andforx∣>1wegetthesame.sowecanheretreatxjustasasymboldespiteitsconcretevalues.heretheproofforx∣>1:x∣>1⇒∣1x∣<111+x=1x1+1x=111+1x=1(11x+1x21x3+...)11+x=1x1x2+1x31x4+...11+xdx=lnx+(1x12x2+13x3+...)+C11+xdx=lnx+ln(1+1x)+C11+xdx=ln(1+x)+C(x∣>1)

Commented by mathmax by abdo last updated on 06/Mar/21

yes

yes

Answered by mathmax by abdo last updated on 05/Mar/21

let f(x)= ∫_x ^1  (dt/(1+t))     if o< x<1 ⇒o≤t≤1 ⇒  f(x)=∫_x ^1 Σ_(n=0) ^∞ (−1)^n t^n  dt =Σ_(n=0) ^∞  (−1)^n  ∫_x ^1  t^n  dt =Σ_(n=0) ^∞ (((−1)^n )/(n+1))[t^(n+1) ]_x ^1   =Σ_(n=0) ^∞ (−1)^n  ((1−x^(n+1) )/(n+1)) =−Σ_(n=1) ^∞  (−1)^(n−1)  (x^n /n) +Σ_(n=0) ^∞  (((−1)^n )/(n+1))  =−ln(1+x)+ln(2)  ⇒∫_1 ^x  (dt/(1+t)) =ln(1+x)−ln(2)  (c=−ln2)  if x>1 we take g(x)=∫_1 ^x  (dt/(1+t)) =_(t=(1/u))  ∫_1 ^(1/x)  ((−du)/(u^2 (1+(1/u))))     =−∫_1 ^(1/x)  (du/(u^2  +u)) =∫_(1/x) ^(1 )  (du/(u(u+1))) =∫_(1/x) ^1 (1/u)Σ_(n=0) ^∞ (−1)^n u^n  du  =Σ_(n=0) ^∞ (−1)^n  ∫_(1/x) ^1  u^(n−1) du =  =∫_(1/x) ^1  (du/u) +Σ_(n=1) ^∞  (−1)^n  [(u^n /n)]_(1/x) ^1   =ln(x)+Σ_(n=1) ^∞  (((−1)^n )/n)(1−(1/x^n ))  =ln(x)+Σ_(n=1) ^∞  (((−1)^n )/n)−Σ_(n=1) ^∞ (((−1)^n )/n)((1/x))^n   =ln(x)−ln(2)+ln(1+(1/x))  =ln(1+x)−ln(2)

letf(x)=x1dt1+tifo<x<1ot1f(x)=x1n=0(1)ntndt=n=0(1)nx1tndt=n=0(1)nn+1[tn+1]x1=n=0(1)n1xn+1n+1=n=1(1)n1xnn+n=0(1)nn+1=ln(1+x)+ln(2)1xdt1+t=ln(1+x)ln(2)(c=ln2)ifx>1wetakeg(x)=1xdt1+t=t=1u11xduu2(1+1u)=11xduu2+u=1x1duu(u+1)=1x11un=0(1)nundu=n=0(1)n1x1un1du==1x1duu+n=1(1)n[unn]1x1=ln(x)+n=1(1)nn(11xn)=ln(x)+n=1(1)nnn=1(1)nn(1x)n=ln(x)ln(2)+ln(1+1x)=ln(1+x)ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com