Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134651 by 0731619177 last updated on 06/Mar/21

Answered by Ar Brandon last updated on 06/Mar/21

sinx=Σ_(n=0) ^∞ (−1)^n (x^(2n+1) /((2n+1)!)) ⇒sinπx=Σ_(n=0) ^∞ (−1)^n (((πx)^(2n+1) )/((2n+1)!))  I=∫_0 ^∞ (1/(x(1−x^2 )))Σ_(n=0) ^∞ (−1)^n (((πx)^(2n+1) )/((2n+1)!))     =Σ_(n=0) ^∞ (−1)^n (π^(2n+1) /((2n+1)!))∫_0 ^∞ (x^(2n+1) /(x(1−x^2 )))dx     =Σ_(n=0) ^∞ (−1)^n (π^(2n+1) /((2n+1)!))∫_0 ^∞ x^(2n) Σ_(k=0) ^∞ x^(2k)      =Σ_(n=0) ^∞ (−1)^n (π^(2n+1) /((2n+1)!))Σ_(k=0) ^∞ [(x^(2n+2k+1) /((2n+2k+1)))]_0 ^∞

$$\mathrm{sinx}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\Rightarrow\mathrm{sin}\pi\mathrm{x}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\left(\pi\mathrm{x}\right)^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!} \\ $$$$\mathcal{I}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\left(\pi\mathrm{x}\right)^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!} \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\pi^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)}\mathrm{dx} \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\pi^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\infty} \mathrm{x}^{\mathrm{2n}} \underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{x}^{\mathrm{2k}} \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\pi^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{2k}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{2k}+\mathrm{1}\right)}\right]_{\mathrm{0}} ^{\infty} \\ $$

Commented by 0731619177 last updated on 06/Mar/21

tanks

$${tanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com