Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 134660 by benjo_mathlover last updated on 06/Mar/21

M = ∫ (dx/(2cos x+3sin x))

M=dx2cosx+3sinx

Answered by EDWIN88 last updated on 06/Mar/21

Let  { ((2 = r sin α)),((3 = r cos α)) :} ⇒ r^2 = 13; r =(√(13))   and tan α = (2/3) ,∴ α = tan^(−1) ((2/3))  M =(1/r)∫ (dx/(sin (α+x))) = (1/r)∫ cosec (x+α) dx  M = (1/r) ln [tan (((x+α))/2) ] + c  M = (1/( (√(13)))) ln [ tan ((x/2)+(1/2)tan^(−1) ((2/3)))] + c

Let{2=rsinα3=rcosαr2=13;r=13andtanα=23,α=tan1(23)M=1rdxsin(α+x)=1rcosec(x+α)dxM=1rln[tan(x+α)2]+cM=113ln[tan(x2+12tan1(23))]+c

Answered by mathmax by abdo last updated on 07/Mar/21

M=∫ (dx/(2cosx+3sinx)) we do the changement tan((x/2))=t ⇒  M=∫  ((2dt)/((1+t^2 )(2((1−t^2 )/(1+t^2 ))+((6t)/(1+t^2 ))))) =∫ ((2dt)/(2(1−t^2 )+6t)) =∫ (dt/(1−t^2  +3t))  =−∫  (dt/(t^2 −3t−1))  Δ=9+4 =13 ⇒t_1 =((3+(√(13)))/2) and t_2 =((3−(√(13)))/2) ⇒  M=−∫  (dt/((t−t_1 )(t−t_2 ))) =−(1/(t_1 −t_2 ))∫ ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =−(1/( (√(13))))ln∣((t−t_1 )/(t−t_2 ))∣ +C =−(1/( (√(13))))ln∣((t−((3+(√(13)))/2))/(t−((3−(√(13)))/2)))∣ +C  =−(1/( (√(13))))ln∣((2t−3−(√(13)))/(2t−3+(√(13))))∣ +C

M=dx2cosx+3sinxwedothechangementtan(x2)=tM=2dt(1+t2)(21t21+t2+6t1+t2)=2dt2(1t2)+6t=dt1t2+3t=dtt23t1Δ=9+4=13t1=3+132andt2=3132M=dt(tt1)(tt2)=1t1t2(1tt11tt2)dt=113lntt1tt2+C=113lnt3+132t3132+C=113ln2t3132t3+13+C

Commented by mathmax by abdo last updated on 07/Mar/21

t=tan((x/2)) ⇒M =−(1/( (√(13))))ln∣((2tan((x/2))−3−(√(13)))/(2tan((x/2))−3+(√(13))))∣ +C

t=tan(x2)M=113ln2tan(x2)3132tan(x2)3+13+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com