Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 134670 by benjo_mathlover last updated on 06/Mar/21

∣ x+(√(1−x^2 )) ∣ = (√2) (2x^2 −1 )  find solution

x+1x2=2(2x21)findsolution

Answered by EDWIN88 last updated on 06/Mar/21

(1) 1−x^2  ≥ 0 ⇒ −1≤x≤1  (2) let x = cos t ; t∈ [ 0,π ]   ∣cos t +(√(1−cos^2 t)) ∣ =(√2) (2cos^2 t−1)   ∣cos t +∣sin t∣∣ = (√2) cos 2t   ∣ cos t+sin t ∣ = (√2) cos 2t   (cos t+sin t)^2 = 2cos^2 2t ;  { ((cos 2t ≥ 0)),((0≤t≤π)) :}  (i) 1+sin 2t = 2−2sin^2 2t    2sin^2 2t +sin 2t−1 = 0→ { ((sin 2t=−1)),((sin 2t=(1/2))) :}    { ((t=−(π/4)+kπ)),((t=(π/(12))+kπ ; t=((5π)/(12))+kπ)) :}→ t=(π/(12)) ; t=((3π)/4)    { ((x = cos (π/(12))= (√((2+(√3))/4)) = ((√(2+(√3)))/2))),((x=cos ((3π)/4)=−((√2)/2))) :}   therefore the solution is  determinant (((x=((√(2+(√3)))/2))),((x =−((√2)/2))))

(1)1x201x1(2)letx=cost;t[0,π]cost+1cos2t=2(2cos2t1)cost+sint∣∣=2cos2tcost+sint=2cos2t(cost+sint)2=2cos22t;{cos2t00tπ(i)1+sin2t=22sin22t2sin22t+sin2t1=0{sin2t=1sin2t=12{t=π4+kπt=π12+kπ;t=5π12+kπt=π12;t=3π4{x=cosπ12=2+34=2+32x=cos3π4=22thereforethesolutionisx=2+32x=22

Commented by john_santu last updated on 06/Mar/21

i think it should be t ∈ [ 0,2π ]   then t = ((7π)/4) ∧ t = ((13π)/(12)) is the solution

ithinkitshouldbet[0,2π]thent=7π4t=13π12isthesolution

Answered by benjo_mathlover last updated on 06/Mar/21

∣x+(√(1−x^2 )) ∣ = (√2) (2x^2 −1)  ⇒x+(√(1−x^2 )) = ±(√2) (2x^2 −1)  ⇒(√(1−x^2 )) = −x±(√2)(2x^2 −1)  squaring   ⇒1−x^2  = x^2 ±2(√2) x(2x^2 −1)+2(2x^2 −1)^2   ⇒0 = 2x^2 −1±2(√2)x(2x^2 −1)+2(2x^2 −1)^2   ⇒0=(2x^2 −1)[1±2x(√2) +2(2x^2 −1)]  (i) 2x^2 =1 ; x_(1,2)  =± ((√2)/2) → { ((≈0.707)),((≈−0.707)) :}  (ii) 4x^2 ±2(√2) x−1= 0   → { ((x_(3,4)  = ((−2(√2) ± 2(√6))/8)=((−(√2) ±(√6))/4) { ((≈0.25)),((≈−0.965)) :})),((x_(5,6)  = (((√2) ±(√6))/4) → { ((≈0.965)),((≈−0.25 )) :})) :}  (iii)for (√(1−x^2 )) defined on −1≤x≤1  (iv) 2x^2 −1≥0 ; x≤−((√2)/2) ∪ x≥((√2)/2)  solution is {±((√2)/2); ((−(√2) ±(√6))/4) ; (((√2) ±(√6))/4) }

x+1x2=2(2x21)x+1x2=±2(2x21)1x2=x±2(2x21)squaring1x2=x2±22x(2x21)+2(2x21)20=2x21±22x(2x21)+2(2x21)20=(2x21)[1±2x2+2(2x21)](i)2x2=1;x1,2=±22{0.7070.707(ii)4x2±22x1=0{x3,4=22±268=2±64{0.250.965x5,6=2±64{0.9650.25(iii)for1x2definedon1x1(iv)2x210;x22x22solutionis{±22;2±64;2±64}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com