Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 134708 by bramlexs22 last updated on 06/Mar/21

D = ∫_0 ^( π/2) sin^4 x cos^5 x dx

D=0π/2sin4xcos5xdx

Answered by john_santu last updated on 06/Mar/21

D = ∫_0 ^( π/2) sin^4 x(1−sin^2 x)^2  cos x dx  let u= sin x ,  determinant (((u=1(upper limit))),((u=0 (lower limit))))  D = ∫_0 ^( 1) u^4 (u^4 −2u^2 +1) du   D = ∫_0 ^( 1) (u^8 −2u^6 +u^4 )du  D = [(u^9 /9)−((2u^7 )/7) +(u^5 /5) ]_0 ^1   D = (1/9)−(2/7)+(1/5) = ((35−90+63)/(315))  D = (8/(315)) •

D=0π/2sin4x(1sin2x)2cosxdxletu=sinx,u=1(upperlimit)u=0(lowerlimit)D=01u4(u42u2+1)duD=01(u82u6+u4)duD=[u992u77+u55]01D=1927+15=3590+63315D=8315

Answered by Dwaipayan Shikari last updated on 06/Mar/21

∫_0 ^(π/2) sin^4 x cos^5 x dx  ,  Generally ∫_0 ^(π/2) sin^m x cos^n x dx=((Γ(((m+1)/2))Γ(((n+1)/2)))/(2Γ(((m+n)/2)+1)))  =((Γ((5/2))Γ(3))/(2Γ(((11)/2))))=(((3/4)(√π).2)/(2.(9/2).(7/2).(5/2).(3/4)(√π)))=(8/(315))

0π2sin4xcos5xdx,Generally0π2sinmxcosnxdx=Γ(m+12)Γ(n+12)2Γ(m+n2+1)=Γ(52)Γ(3)2Γ(112)=34π.22.92.72.52.34π=8315

Terms of Service

Privacy Policy

Contact: info@tinkutara.com