Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 134858 by mnjuly1970 last updated on 07/Mar/21

Answered by mathmax by abdo last updated on 07/Mar/21

let f(x)=lnxln^2 (1−x) changement 1−x=t give x=1−t  (t→0^+ )  f(x)=ln(1−t)ln^2 (t) =g(t) we have  ln^′ (1−t)=((−1)/(1−t))=−(1+t +o(t)) ⇒ln(1−t)=−t−(t^2 /2) +o(t^2 ) ⇒  g(t)∼(−t−(t^2 /2))ln^2 t ⇒g(t)∼−t ln^2 (t)−((t^2 ln^2 t)/2)  lnt =u ⇒t=e^u  ⇒tln^2 t =e^u  u^2  (u→−∞) ⇒lim u^2 e^u  =0 ⇒  also lim tlnt =0 ⇒lim_(t→0^+ )  g(t)=0 =lim_(x→1) f(x)

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{lnxln}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)\:\mathrm{changement}\:\mathrm{1}−\mathrm{x}=\mathrm{t}\:\mathrm{give}\:\mathrm{x}=\mathrm{1}−\mathrm{t}\:\:\left(\mathrm{t}\rightarrow\mathrm{0}^{+} \right) \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)\mathrm{ln}^{\mathrm{2}} \left(\mathrm{t}\right)\:=\mathrm{g}\left(\mathrm{t}\right)\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{ln}^{'} \left(\mathrm{1}−\mathrm{t}\right)=\frac{−\mathrm{1}}{\mathrm{1}−\mathrm{t}}=−\left(\mathrm{1}+\mathrm{t}\:+\mathrm{o}\left(\mathrm{t}\right)\right)\:\Rightarrow\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)=−\mathrm{t}−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}\:+\mathrm{o}\left(\mathrm{t}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$$\mathrm{g}\left(\mathrm{t}\right)\sim\left(−\mathrm{t}−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}\right)\mathrm{ln}^{\mathrm{2}} \mathrm{t}\:\Rightarrow\mathrm{g}\left(\mathrm{t}\right)\sim−\mathrm{t}\:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{t}\right)−\frac{\mathrm{t}^{\mathrm{2}} \mathrm{ln}^{\mathrm{2}} \mathrm{t}}{\mathrm{2}} \\ $$$$\mathrm{lnt}\:=\mathrm{u}\:\Rightarrow\mathrm{t}=\mathrm{e}^{\mathrm{u}} \:\Rightarrow\mathrm{tln}^{\mathrm{2}} \mathrm{t}\:=\mathrm{e}^{\mathrm{u}} \:\mathrm{u}^{\mathrm{2}} \:\left(\mathrm{u}\rightarrow−\infty\right)\:\Rightarrow\mathrm{lim}\:\mathrm{u}^{\mathrm{2}} \mathrm{e}^{\mathrm{u}} \:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{also}\:\mathrm{lim}\:\mathrm{tlnt}\:=\mathrm{0}\:\Rightarrow\mathrm{lim}_{\mathrm{t}\rightarrow\mathrm{0}^{+} } \:\mathrm{g}\left(\mathrm{t}\right)=\mathrm{0}\:=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right) \\ $$

Answered by metamorfose last updated on 08/Mar/21

Q_1 :lim_(x→1^− ) ln(x)ln^2 (1−x)=lim_(x→1^− ) ((ln(x))/(x−1))(x−1)ln^2 (1−x)  and , lim_(x→1^− ) ((ln(x))/(x−1))=1 , lim_(x→1^− ) −(1−x)ln^2 (1−x)=lim_(t→0^+ ) −tln^2 (t)=0  hence , lim_(x→1^− ) ln(x)ln^2 (1−x)=0 ...  Same for Q_2  : let y=1−x  then lim_(x→1^− ) x=lim_(x→0^+ ) y  so : lim_(y→0^+ ) ln^2 (y)ln(1−y)=lim_(x→1^− ) ln(x)ln^2 (1−x)=0...

$${Q}_{\mathrm{1}} :\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}{ln}\left({x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)=\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\frac{{ln}\left({x}\right)}{{x}−\mathrm{1}}\left({x}−\mathrm{1}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right) \\ $$$${and}\:,\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\frac{{ln}\left({x}\right)}{{x}−\mathrm{1}}=\mathrm{1}\:,\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}−\left(\mathrm{1}−{x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)=\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}−{tln}^{\mathrm{2}} \left({t}\right)=\mathrm{0} \\ $$$${hence}\:,\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}{ln}\left({x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)=\mathrm{0}\:... \\ $$$${Same}\:{for}\:{Q}_{\mathrm{2}} \::\:{let}\:{y}=\mathrm{1}−{x} \\ $$$${then}\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}{x}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{y} \\ $$$${so}\::\:\underset{{y}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{ln}^{\mathrm{2}} \left({y}\right){ln}\left(\mathrm{1}−{y}\right)=\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}{ln}\left({x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)=\mathrm{0}... \\ $$

Answered by Dwaipayan Shikari last updated on 08/Mar/21

lim_(x→0) log^2 (x)log(1−x)  =0  log(x) approaches to infinity but approaching to zero is   much faster(log(1−x))→0

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{log}^{\mathrm{2}} \left({x}\right){log}\left(\mathrm{1}−{x}\right) \\ $$$$=\mathrm{0} \\ $$$${log}\left({x}\right)\:{approaches}\:{to}\:{infinity}\:{but}\:{approaching}\:{to}\:{zero}\:{is}\: \\ $$$${much}\:{faster}\left({log}\left(\mathrm{1}−{x}\right)\right)\rightarrow\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com