All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 13491 by 433 last updated on 20/May/17
Test1.Solveequation(k2−1)x2+(k−1)x+(k+1)=0k∈R(30)2.Provesin(x)1+cos(x)=1−cos(x)sin(x)(35)3.P(x)=−2x3−2x2−x+2409FindP(−11)(35)EvaluateotheranswersandgivemarksIwanttoseehowmathteachersevaluateinothercountriesSorryfoymyenglish
Answered by 433 last updated on 20/May/17
1.Ifk=12=0Ifk=−1−2x=0⇒x=0Ifk≠±1Δ=(k−1)2−4(k2−1)(k+1)=(k−1)((k−1)−4(k+1)2)=(k−1)(k−1−4k2−8k−4)(k−1)(−4k2−7k−5)Δ′=72−20×4=49−80<0−4k2−7k−5<0∀kIfk>1⇒Δ<0Ifk∈(−∞,−1)∪(−1,1)⇒Δ>0x1,2=1−k±(k−1)(−4k2−7k−5)2(k2−1)2.sin(x)1+cos(x)=1−cos(x)sin(x)⇔sin2(x)=1−cos2(x)sin2(x)+cos2(x)=13.Q(x)=x+11P(x)=Q(x)R(x)+uP(−11)=Q(−11)R(−11)+uQ(−11)=−11+11=0P(−11)=u(−2x3−2x2−x+2409)=(x+11)(−2x2+20x−221)+4840P(−11)=4840
Terms of Service
Privacy Policy
Contact: info@tinkutara.com