Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 135190 by liberty last updated on 11/Mar/21

lim_(x→0)  (1/x^2 ) ∫_0 ^( x)  (t^2 /(t^4 +1)) dt ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{x}} \:\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{t}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dt}\:? \\ $$$$ \\ $$

Answered by metamorfose last updated on 11/Mar/21

∃c∈[0,x] , (1/x^2 )∫_0 ^x (t^2 /((t^4 +1)))dt=(c^2 /(x(c^4 +1)))  ∀c∈[0,x] , 0≤c^2 ≤x^2  ... so :  0≤(c^2 /(x(c^4 +1)))≤(x/(c^4 +1)) thus : lim_(x→0) (c^2 /(x(c^4 +1)))=0  lim_(x→0) (1/x^2 )∫_0 ^x (t^2 /(t^4 +1))dt=0 ...

$$\exists{c}\in\left[\mathrm{0},{x}\right]\:,\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\int_{\mathrm{0}} ^{{x}} \frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{4}} +\mathrm{1}\right)}{dt}=\frac{{c}^{\mathrm{2}} }{{x}\left({c}^{\mathrm{4}} +\mathrm{1}\right)} \\ $$$$\forall{c}\in\left[\mathrm{0},{x}\right]\:,\:\mathrm{0}\leqslant{c}^{\mathrm{2}} \leqslant{x}^{\mathrm{2}} \:...\:{so}\:: \\ $$$$\mathrm{0}\leqslant\frac{{c}^{\mathrm{2}} }{{x}\left({c}^{\mathrm{4}} +\mathrm{1}\right)}\leqslant\frac{{x}}{{c}^{\mathrm{4}} +\mathrm{1}}\:{thus}\::\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{c}^{\mathrm{2}} }{{x}\left({c}^{\mathrm{4}} +\mathrm{1}\right)}=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\int_{\mathrm{0}} ^{{x}} \frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{4}} +\mathrm{1}}{dt}=\mathrm{0}\:... \\ $$

Answered by benjo_mathlover last updated on 11/Mar/21

lim_(x→0)  ((∫_0 ^( x) (t^2 /(t^4 +1)) dt)/x^2 ) [ L′Ho^� pital ]  = lim_(x→0)  ((x^2 /(x^4 +1))/(2x)) = lim_(x→0)  (x/(2(x^4 +1)))= 0

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\int_{\mathrm{0}} ^{\:\mathrm{x}} \frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{t}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dt}}{\mathrm{x}^{\mathrm{2}} }\:\left[\:\mathrm{L}'\mathrm{H}\hat {\mathrm{o}pital}\:\right] \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}}{\mathrm{2x}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}}{\mathrm{2}\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)}=\:\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com