Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 135191 by liberty last updated on 11/Mar/21

 { ((x^2 −yz = 3)),((y^2 − zx = 5)),((z^2 −xy = −1)) :}  solve for x ,y and z.

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{yz}\:=\:\mathrm{3}}\\{\mathrm{y}^{\mathrm{2}} −\:\mathrm{zx}\:=\:\mathrm{5}}\\{\mathrm{z}^{\mathrm{2}} −\mathrm{xy}\:=\:−\mathrm{1}}\end{cases} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:,\mathrm{y}\:\mathrm{and}\:\mathrm{z}. \\ $$

Answered by MJS_new last updated on 11/Mar/21

y=px∧z=qx  (1)  (1−pq)x^2 −3=0 ⇒ x^2 =(3/(1−pq))  (2)  (p^2 −q)x^2 −5=0 ⇒ x^2 =(5/(p^2 −q))  (3)  (q^2 −p)x^2 +1=0 ⇒ x^2 =(1/(p−q^2 ))  (a)  (3/(1−pq))=(5/(p^2 −q))  (b)  (3/(1−pq))=(1/(p−q^2 ))  (a)  3p^2 +5pq−3q−5=0 ⇒ q=((5−3p^2 )/(5p−3))  (b)  pq+3p−3q^2 −1=0  inserting into (b) leads to  p^4 −2p^3 −p+2=0  (p−2)(p−1)(p^2 +p+1)=0  p=1∨p=2∨p=−(1/2)±((√3)/2)i  q=1∨q=−1∨q=−(1/2)∓((√3)/2)i  the only possible solution is  x^2 =1∧y=2x∧z=−x  ⇒  x=−1∧y=−2∧z=1 ∨ x=1∧y=2∧z=−1

$${y}={px}\wedge{z}={qx} \\ $$$$\left(\mathrm{1}\right)\:\:\left(\mathrm{1}−{pq}\right){x}^{\mathrm{2}} −\mathrm{3}=\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{1}−{pq}} \\ $$$$\left(\mathrm{2}\right)\:\:\left({p}^{\mathrm{2}} −{q}\right){x}^{\mathrm{2}} −\mathrm{5}=\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{2}} =\frac{\mathrm{5}}{{p}^{\mathrm{2}} −{q}} \\ $$$$\left(\mathrm{3}\right)\:\:\left({q}^{\mathrm{2}} −{p}\right){x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{2}} =\frac{\mathrm{1}}{{p}−{q}^{\mathrm{2}} } \\ $$$$\left({a}\right)\:\:\frac{\mathrm{3}}{\mathrm{1}−{pq}}=\frac{\mathrm{5}}{{p}^{\mathrm{2}} −{q}} \\ $$$$\left({b}\right)\:\:\frac{\mathrm{3}}{\mathrm{1}−{pq}}=\frac{\mathrm{1}}{{p}−{q}^{\mathrm{2}} } \\ $$$$\left({a}\right)\:\:\mathrm{3}{p}^{\mathrm{2}} +\mathrm{5}{pq}−\mathrm{3}{q}−\mathrm{5}=\mathrm{0}\:\Rightarrow\:{q}=\frac{\mathrm{5}−\mathrm{3}{p}^{\mathrm{2}} }{\mathrm{5}{p}−\mathrm{3}} \\ $$$$\left({b}\right)\:\:{pq}+\mathrm{3}{p}−\mathrm{3}{q}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{inserting}\:\mathrm{into}\:\left({b}\right)\:\mathrm{leads}\:\mathrm{to} \\ $$$${p}^{\mathrm{4}} −\mathrm{2}{p}^{\mathrm{3}} −{p}+\mathrm{2}=\mathrm{0} \\ $$$$\left({p}−\mathrm{2}\right)\left({p}−\mathrm{1}\right)\left({p}^{\mathrm{2}} +{p}+\mathrm{1}\right)=\mathrm{0} \\ $$$${p}=\mathrm{1}\vee{p}=\mathrm{2}\vee{p}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$${q}=\mathrm{1}\vee{q}=−\mathrm{1}\vee{q}=−\frac{\mathrm{1}}{\mathrm{2}}\mp\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{the}\:\mathrm{only}\:\mathrm{possible}\:\mathrm{solution}\:\mathrm{is} \\ $$$${x}^{\mathrm{2}} =\mathrm{1}\wedge{y}=\mathrm{2}{x}\wedge{z}=−{x} \\ $$$$\Rightarrow \\ $$$${x}=−\mathrm{1}\wedge{y}=−\mathrm{2}\wedge{z}=\mathrm{1}\:\vee\:{x}=\mathrm{1}\wedge{y}=\mathrm{2}\wedge{z}=−\mathrm{1} \\ $$

Answered by benjo_mathlover last updated on 11/Mar/21

adding the three equation gives  ⇒x^2 +y^2 +z^2 −(xy+xz+yz)=7  ⇒2(x^2 +y^2 +z^2 )−2(xy+xz+yz)=14  let u=x−y , v=y−z and w=z−x  we get u^2 +v^2 +w^2  = 14   while obviously u+v+w = 0  w = −(u+v) substituing gives  u^2 +v^2 +uv = 7 .now substract the  equation y^2 −zx=5 from first one  in the original problem   x^2 −y^2 +zx−zy = −2  (x−y)(x+y+z)=−2...(i)  ⇒the third from the second gives  (y−z)(x+y+z)=6 ...(2)  (u,v)=(x−y,y−z) we see that   v=−3u and u^2 =1 so (u,v)=(1,−3)or  (−1,3) . case(1)  { ((x=y+1)),((z=y+3)) :}  substituting the equation   y^2 =5+zx we find the solution    { (((−1,−2,1) and)),(((1,2,−1))) :}

$$\mathrm{adding}\:\mathrm{the}\:\mathrm{three}\:\mathrm{equation}\:\mathrm{gives} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} −\left(\mathrm{xy}+\mathrm{xz}+\mathrm{yz}\right)=\mathrm{7} \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right)−\mathrm{2}\left(\mathrm{xy}+\mathrm{xz}+\mathrm{yz}\right)=\mathrm{14} \\ $$$$\mathrm{let}\:\mathrm{u}=\mathrm{x}−\mathrm{y}\:,\:\mathrm{v}=\mathrm{y}−\mathrm{z}\:\mathrm{and}\:\mathrm{w}=\mathrm{z}−\mathrm{x} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} +\mathrm{w}^{\mathrm{2}} \:=\:\mathrm{14}\: \\ $$$$\mathrm{while}\:\mathrm{obviously}\:\mathrm{u}+\mathrm{v}+\mathrm{w}\:=\:\mathrm{0} \\ $$$$\mathrm{w}\:=\:−\left(\mathrm{u}+\mathrm{v}\right)\:\mathrm{substituing}\:\mathrm{gives} \\ $$$$\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} +\mathrm{uv}\:=\:\mathrm{7}\:.\mathrm{now}\:\mathrm{substract}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{y}^{\mathrm{2}} −\mathrm{zx}=\mathrm{5}\:\mathrm{from}\:\mathrm{first}\:\mathrm{one} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{original}\:\mathrm{problem}\: \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} +\mathrm{zx}−\mathrm{zy}\:=\:−\mathrm{2} \\ $$$$\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)=−\mathrm{2}...\left(\mathrm{i}\right) \\ $$$$\Rightarrow\mathrm{the}\:\mathrm{third}\:\mathrm{from}\:\mathrm{the}\:\mathrm{second}\:\mathrm{gives} \\ $$$$\left(\mathrm{y}−\mathrm{z}\right)\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)=\mathrm{6}\:...\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{u},\mathrm{v}\right)=\left(\mathrm{x}−\mathrm{y},\mathrm{y}−\mathrm{z}\right)\:\mathrm{we}\:\mathrm{see}\:\mathrm{that}\: \\ $$$$\mathrm{v}=−\mathrm{3u}\:\mathrm{and}\:\mathrm{u}^{\mathrm{2}} =\mathrm{1}\:\mathrm{so}\:\left(\mathrm{u},\mathrm{v}\right)=\left(\mathrm{1},−\mathrm{3}\right)\mathrm{or} \\ $$$$\left(−\mathrm{1},\mathrm{3}\right)\:.\:\mathrm{case}\left(\mathrm{1}\right)\:\begin{cases}{\mathrm{x}=\mathrm{y}+\mathrm{1}}\\{\mathrm{z}=\mathrm{y}+\mathrm{3}}\end{cases} \\ $$$$\mathrm{substituting}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{y}^{\mathrm{2}} =\mathrm{5}+\mathrm{zx}\:\mathrm{we}\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$$$\begin{cases}{\left(−\mathrm{1},−\mathrm{2},\mathrm{1}\right)\:\mathrm{and}}\\{\left(\mathrm{1},\mathrm{2},−\mathrm{1}\right)}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com