Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 135300 by bobhans last updated on 12/Mar/21

((√2) +(√3) +1)((√2) −(√3) +1)((√2) +(√3)−1)((√2)−(√3)−1)=?

(2+3+1)(23+1)(2+31)(231)=?

Answered by Olaf last updated on 12/Mar/21

((√2)+(√3)+1)((√2)−(√3)−1) = 2−((√3)+1)^2   = −2−2(√3) = −2(1+(√3))  ((√2)+(√3)−1)((√2)−(√3)+1) = 2−((√3)−1)^2   = −2+2(√3) = −2(1−(√3))    Total product :  4(1−3) = −8

(2+3+1)(231)=2(3+1)2=223=2(1+3)(2+31)(23+1)=2(31)2=2+23=2(13)Totalproduct:4(13)=8

Answered by john_santu last updated on 12/Mar/21

via Trigonometry  let ((√2)+(√3)+1)((√2)−(√3)+1)((√2)+(√3)−1)((√2)−(√3)−1)=p  then (((√2)/2)+((√3)/2)+(1/2))(((√2)/2)−((√3)/2)+(1/2))(((√2)/2)+((√3)/2)−(1/2))(((√2)/2)−((√3)/2)−(1/2))=(p/(16))    consider : ((√3)/2)+(1/2)= cos (π/6)+cos (π/3)  = 2cos (π/4)cos (π/(12))=(√2) cos (π/(12))  for the first factor ((√2)/2)(1+2cos (π/(12)))  for the last factor ((√2)/2)(1−2cos (π/(12)))  so the product of these two factors  will be (1/2)(1−4cos^2 (π/(12)))  likewise for difference of the   relevant summands we shall have  (1/2)(1−4sin^2 (π/(12)))   →now  { ((4sin^2 (π/(12)) = 2−(√3))),((4cos^2 (π/(12)) = 2+(√3))) :}  ∴ (1/2)(1−4cos^2 (π/(12)))(1−4sin^2 (π/(12)))=(p/(16))  ∴ (1/4)(−1)((√3)−1)((√3)+1)=(p/(16))  ∴ p = 16×(−(1/2))=−8  [ ((√2)+(√3)+1)_(((√2)/2)(1+2cos (π/(12))))  ((√2)−(√3)+1)_(((√2)/2)(1−2cos (π/(12))))  ((√2)+(√3)−1)_(((√2)/2)(1+2sin (π/(12))))  ((√2)−(√3)−1)_(((√2)/2)(1−2sin (π/(12))))  ]

viaTrigonometrylet(2+3+1)(23+1)(2+31)(231)=pthen(22+32+12)(2232+12)(22+3212)(223212)=p16consider:32+12=cosπ6+cosπ3=2cosπ4cosπ12=2cosπ12forthefirstfactor22(1+2cosπ12)forthelastfactor22(12cosπ12)sotheproductofthesetwofactorswillbe12(14cos2π12)likewisefordifferenceoftherelevantsummandsweshallhave12(14sin2π12)now{4sin2π12=234cos2π12=2+312(14cos2π12)(14sin2π12)=p1614(1)(31)(3+1)=p16p=16×(12)=8[(2+3+1)22(1+2cosπ12)(23+1)22(12cosπ12)(2+31)22(1+2sinπ12)(231)22(12sinπ12)]

Answered by som(math1967) last updated on 12/Mar/21

let (√2)=a,(√3)=b,1=c  (a+b+c)(a−b+c)(a+b−c)(a−b−c)  ={(a+c)^2 −b^2 }{(a−c)^2 −b^2 }  =(a^2 −b^2 +c^2 +2ac)(a^2 +c^2 −b^2 −2ac)  =(a^2 −b^2 +c^2 )^2 −4a^2 c^2   =a^4 +b^4 +c^4 −2a^2 b^2 −2b^2 c^2 −2a^2 c^2   =4+9+1−2.2.3−2.3.1−2.2.1  =14−22=−8

let2=a,3=b,1=c(a+b+c)(ab+c)(a+bc)(abc)={(a+c)2b2}{(ac)2b2}=(a2b2+c2+2ac)(a2+c2b22ac)=(a2b2+c2)24a2c2=a4+b4+c42a2b22b2c22a2c2=4+9+12.2.32.3.12.2.1=1422=8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com