All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 135300 by bobhans last updated on 12/Mar/21
(2+3+1)(2−3+1)(2+3−1)(2−3−1)=?
Answered by Olaf last updated on 12/Mar/21
(2+3+1)(2−3−1)=2−(3+1)2=−2−23=−2(1+3)(2+3−1)(2−3+1)=2−(3−1)2=−2+23=−2(1−3)Totalproduct:4(1−3)=−8
Answered by john_santu last updated on 12/Mar/21
viaTrigonometrylet(2+3+1)(2−3+1)(2+3−1)(2−3−1)=pthen(22+32+12)(22−32+12)(22+32−12)(22−32−12)=p16consider:32+12=cosπ6+cosπ3=2cosπ4cosπ12=2cosπ12forthefirstfactor22(1+2cosπ12)forthelastfactor22(1−2cosπ12)sotheproductofthesetwofactorswillbe12(1−4cos2π12)likewisefordifferenceoftherelevantsummandsweshallhave12(1−4sin2π12)→now{4sin2π12=2−34cos2π12=2+3∴12(1−4cos2π12)(1−4sin2π12)=p16∴14(−1)(3−1)(3+1)=p16∴p=16×(−12)=−8[(2+3+1)⏟22(1+2cosπ12)(2−3+1)⏟22(1−2cosπ12)(2+3−1)⏟22(1+2sinπ12)(2−3−1)⏟22(1−2sinπ12)]
Answered by som(math1967) last updated on 12/Mar/21
let2=a,3=b,1=c(a+b+c)(a−b+c)(a+b−c)(a−b−c)={(a+c)2−b2}{(a−c)2−b2}=(a2−b2+c2+2ac)(a2+c2−b2−2ac)=(a2−b2+c2)2−4a2c2=a4+b4+c4−2a2b2−2b2c2−2a2c2=4+9+1−2.2.3−2.3.1−2.2.1=14−22=−8
Terms of Service
Privacy Policy
Contact: info@tinkutara.com