Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 135309 by mnjuly1970 last updated on 12/Mar/21

          ....  Nice    Calculus ....          prove  that :::         𝛗=∫_0 ^( ∞) ((sin(ksinα)x)/( (√x)))dx=(√(π/k)) sin((α/2))...

$$\:\:\:\:\:\:\:\:\:\:....\:\:\mathscr{N}{ice}\:\:\:\:\mathscr{C}{alculus}\:.... \\ $$$$\:\:\:\:\:\:\:\:{prove}\:\:{that}\:::: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({ksin}\alpha\right){x}}{\:\sqrt{{x}}}{dx}=\sqrt{\frac{\pi}{{k}}}\:{sin}\left(\frac{\alpha}{\mathrm{2}}\right)... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Answered by mathmax by abdo last updated on 12/Mar/21

Φ =∫_0 ^∞  ((sin(ksinα)x)/( (√x)))  we put ksinα=λ ⇒Φ=∫_0 ^∞  ((sin(λx))/( (√x)))dx  =−Im(∫_0 ^∞  (e^(−iλx) /( (√x)))dx)  we have ∫_0 ^∞  (e^(−iλx) /( (√x)))dx =_((√x)=t)   ∫_0 ^∞  (e^(−iλt^2 ) /t)(2t)dt  =2∫_0 ^∞  e^(−iλt^2 ) dt =2 ∫_0 ^∞   e^(−((√(λi))t)^2 ) dt =_((√(λi))t=z)    2∫_0 ^∞  e^(−z^2 ) (dz/( (√(λi))))  =(1/( (√i)(√λ)))×2.((√π)/2)  =(√(π/λ))e^(−((iπ)/4)) =(√(π/λ)){(1/( (√2)))−(i/( (√2)))} ⇒  Φ=(1/( (√2)))(√(π/λ))=(1/( (√2)))(√(π/(ksinα)))=(√(π/(2ksinα)))

$$\Phi\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{ksin}\alpha\right)\mathrm{x}}{\:\sqrt{\mathrm{x}}}\:\:\mathrm{we}\:\mathrm{put}\:\mathrm{ksin}\alpha=\lambda\:\Rightarrow\Phi=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\lambda\mathrm{x}\right)}{\:\sqrt{\mathrm{x}}}\mathrm{dx} \\ $$$$=−\mathrm{Im}\left(\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{i}\lambda\mathrm{x}} }{\:\sqrt{\mathrm{x}}}\mathrm{dx}\right)\:\:\mathrm{we}\:\mathrm{have}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{i}\lambda\mathrm{x}} }{\:\sqrt{\mathrm{x}}}\mathrm{dx}\:=_{\sqrt{\mathrm{x}}=\mathrm{t}} \:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{i}\lambda\mathrm{t}^{\mathrm{2}} } }{\mathrm{t}}\left(\mathrm{2t}\right)\mathrm{dt} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{i}\lambda\mathrm{t}^{\mathrm{2}} } \mathrm{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\left(\sqrt{\lambda\mathrm{i}}\mathrm{t}\right)^{\mathrm{2}} } \mathrm{dt}\:=_{\sqrt{\lambda\mathrm{i}}\mathrm{t}=\mathrm{z}} \:\:\:\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \frac{\mathrm{dz}}{\:\sqrt{\lambda\mathrm{i}}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{i}}\sqrt{\lambda}}×\mathrm{2}.\frac{\sqrt{\pi}}{\mathrm{2}}\:\:=\sqrt{\frac{\pi}{\lambda}}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} =\sqrt{\frac{\pi}{\lambda}}\left\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{i}}{\:\sqrt{\mathrm{2}}}\right\}\:\Rightarrow \\ $$$$\Phi=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{\frac{\pi}{\lambda}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{\frac{\pi}{\mathrm{ksin}\alpha}}=\sqrt{\frac{\pi}{\mathrm{2ksin}\alpha}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com