Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 135437 by 0731619177 last updated on 13/Mar/21

Answered by EDWIN88 last updated on 13/Mar/21

L′Ho^� pital   lim_(x→0)  (((4x−2sin 2x)/(2x^2 +cos 2x))/(4x^3 )) = lim_(x→0)  (1/(2x^2 +cos 2x)).lim_(x→0)  ((4x−2sin 2x )/(4x^3 ))  = (1/1). lim_(x→0)  ((4−4cos 2x)/(12x^2 )) = (1/3).lim_(x→0) ((1−(1−2sin^2 x))/x^2 )  =(2/3).[ lim_(x→0)  ((sin x)/x) ]^2  = (2/3)

$$\mathrm{L}'\mathrm{H}\hat {\mathrm{o}pital}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{4x}−\mathrm{2sin}\:\mathrm{2x}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{cos}\:\mathrm{2x}}}{\mathrm{4x}^{\mathrm{3}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{cos}\:\mathrm{2x}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4x}−\mathrm{2sin}\:\mathrm{2x}\:}{\mathrm{4x}^{\mathrm{3}} } \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{1}}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4}−\mathrm{4cos}\:\mathrm{2x}}{\mathrm{12x}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}.\left[\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\:\right]^{\mathrm{2}} \:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Answered by mathmax by abdo last updated on 13/Mar/21

let f(x)=((ln(2x^2  +cos(2x)))/x^4 )  we have cosx ∼1−(x^2 /2)+(x^4 /(4!)) ⇒  cos(2x)∼1−2x^2  +((16x^4 )/(4.3.2)) ⇒cos(2x)∼1−2x^2  +((2x^4 )/3) ⇒  2x^2  +cos(2x)∼1+((2x^4 )/3) ⇒ln(2x^2  +cos(2x))∼ln(1+((2x^4 )/3))∼((2x^4 )/3) ⇒  f(x)∼(2/3) ⇒lim_(x→0) f(x)=(2/3)

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{ln}\left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{cos}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{4}} }\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{cosx}\:\sim\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{4}!}\:\Rightarrow \\ $$$$\mathrm{cos}\left(\mathrm{2x}\right)\sim\mathrm{1}−\mathrm{2x}^{\mathrm{2}} \:+\frac{\mathrm{16x}^{\mathrm{4}} }{\mathrm{4}.\mathrm{3}.\mathrm{2}}\:\Rightarrow\mathrm{cos}\left(\mathrm{2x}\right)\sim\mathrm{1}−\mathrm{2x}^{\mathrm{2}} \:+\frac{\mathrm{2x}^{\mathrm{4}} }{\mathrm{3}}\:\Rightarrow \\ $$$$\mathrm{2x}^{\mathrm{2}} \:+\mathrm{cos}\left(\mathrm{2x}\right)\sim\mathrm{1}+\frac{\mathrm{2x}^{\mathrm{4}} }{\mathrm{3}}\:\Rightarrow\mathrm{ln}\left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{cos}\left(\mathrm{2x}\right)\right)\sim\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{2x}^{\mathrm{4}} }{\mathrm{3}}\right)\sim\frac{\mathrm{2x}^{\mathrm{4}} }{\mathrm{3}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\sim\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$

Commented by 0731619177 last updated on 13/Mar/21

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com