Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 135507 by 0731619177 last updated on 13/Mar/21

Answered by Rasheed.Sindhi last updated on 15/Mar/21

(x+y)(81+xy) − 9(x+y)^2 =210  (x+y)(81+xy−9(x+y))=210    Let x+y=n where n∈Z ∧ n ∣ 210  x+y=n ∧ 81+xy−9(x+y)=210/n  y=n−x→            81+x(n−x)−9n=210/n          xn^2 −x^2 n−3(3n^2 −27n+70)=0          x^2 n−xn^2 +3(3n^2 −27n+70)=0         ( Quadratic in x)  Discrimenent (D):      D=n^4 −12n(3n^2 −27n+70)  As x is an integer so D must be perfect  square.  possible values for n:  ±1,±2,±3,±5,±6,±7,±10,±14,±15,  ±21,±30,±35,±70,±105,±210  Only for n=5,6,7; D  is perfect square:   D=25,144,49  So only n=5,6,7 may be valid values.  ^• (x+y)(81+xy−9(x+y))=5×42     x+y=5 ∧ 81+xy−9(x+y)=42                         81+xy−9(5)=42                          xy=6  x=2,y=3 or x=3,y=2  ^• (x+y)(81+xy−9(x+y))=6×35      x+y=6 ∧ 81+xy−9(x+y)=35       x+y=6 ∧ xy=8      x=2,y=4 or x=4,y=2  ^• (x+y)(81+xy−9(x+y))=7×30      x+y=7 ∧ 81+xy−9(x+y)=30     x+y=7 ∧ xy=12     x=3,y=4 or x=4,y=3    (x,y)=(2,3),(3,2),(2,4),(4,2),(3,4),(4,3)

$$\left({x}+{y}\right)\left(\mathrm{81}+{xy}\right)\:−\:\mathrm{9}\left({x}+{y}\right)^{\mathrm{2}} =\mathrm{210} \\ $$$$\left({x}+{y}\right)\left(\mathrm{81}+{xy}−\mathrm{9}\left({x}+{y}\right)\right)=\mathrm{210} \\ $$$$ \\ $$$${Let}\:{x}+{y}={n}\:{where}\:{n}\in\mathbb{Z}\:\wedge\:{n}\:\mid\:\mathrm{210} \\ $$$${x}+{y}={n}\:\wedge\:\mathrm{81}+{xy}−\mathrm{9}\left({x}+{y}\right)=\mathrm{210}/{n} \\ $$$${y}={n}−{x}\rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{81}+{x}\left({n}−{x}\right)−\mathrm{9}{n}=\mathrm{210}/{n} \\ $$$$\:\:\:\:\:\:\:\:{xn}^{\mathrm{2}} −{x}^{\mathrm{2}} {n}−\mathrm{3}\left(\mathrm{3}{n}^{\mathrm{2}} −\mathrm{27}{n}+\mathrm{70}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} {n}−{xn}^{\mathrm{2}} +\mathrm{3}\left(\mathrm{3}{n}^{\mathrm{2}} −\mathrm{27}{n}+\mathrm{70}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\left(\:{Quadratic}\:{in}\:{x}\right) \\ $$$${Discrimenent}\:\left({D}\right): \\ $$$$\:\:\:\:{D}={n}^{\mathrm{4}} −\mathrm{12}{n}\left(\mathrm{3}{n}^{\mathrm{2}} −\mathrm{27}{n}+\mathrm{70}\right) \\ $$$${As}\:{x}\:{is}\:{an}\:{integer}\:{so}\:{D}\:{must}\:{be}\:{perfect} \\ $$$${square}. \\ $$$${possible}\:{values}\:{for}\:{n}: \\ $$$$\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{3},\pm\mathrm{5},\pm\mathrm{6},\pm\mathrm{7},\pm\mathrm{10},\pm\mathrm{14},\pm\mathrm{15}, \\ $$$$\pm\mathrm{21},\pm\mathrm{30},\pm\mathrm{35},\pm\mathrm{70},\pm\mathrm{105},\pm\mathrm{210} \\ $$$${Only}\:{for}\:{n}=\mathrm{5},\mathrm{6},\mathrm{7};\:{D}\:\:{is}\:{perfect}\:{square}: \\ $$$$\:{D}=\mathrm{25},\mathrm{144},\mathrm{49} \\ $$$${So}\:{only}\:{n}=\mathrm{5},\mathrm{6},\mathrm{7}\:\boldsymbol{{may}}\:\boldsymbol{{be}}\:{valid}\:{values}. \\ $$$$\:^{\bullet} \left({x}+{y}\right)\left(\mathrm{81}+{xy}−\mathrm{9}\left({x}+{y}\right)\right)=\mathrm{5}×\mathrm{42} \\ $$$$\:\:\:{x}+{y}=\mathrm{5}\:\wedge\:\mathrm{81}+{xy}−\mathrm{9}\left({x}+{y}\right)=\mathrm{42} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{81}+{xy}−\mathrm{9}\left(\mathrm{5}\right)=\mathrm{42} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{xy}=\mathrm{6} \\ $$$${x}=\mathrm{2},{y}=\mathrm{3}\:{or}\:{x}=\mathrm{3},{y}=\mathrm{2} \\ $$$$\:^{\bullet} \left({x}+{y}\right)\left(\mathrm{81}+{xy}−\mathrm{9}\left({x}+{y}\right)\right)=\mathrm{6}×\mathrm{35} \\ $$$$\:\:\:\:{x}+{y}=\mathrm{6}\:\wedge\:\mathrm{81}+{xy}−\mathrm{9}\left({x}+{y}\right)=\mathrm{35} \\ $$$$\:\:\:\:\:{x}+{y}=\mathrm{6}\:\wedge\:{xy}=\mathrm{8} \\ $$$$\:\:\:\:{x}=\mathrm{2},{y}=\mathrm{4}\:{or}\:{x}=\mathrm{4},{y}=\mathrm{2} \\ $$$$\:^{\bullet} \left({x}+{y}\right)\left(\mathrm{81}+{xy}−\mathrm{9}\left({x}+{y}\right)\right)=\mathrm{7}×\mathrm{30} \\ $$$$\:\:\:\:{x}+{y}=\mathrm{7}\:\wedge\:\mathrm{81}+{xy}−\mathrm{9}\left({x}+{y}\right)=\mathrm{30} \\ $$$$\:\:\:{x}+{y}=\mathrm{7}\:\wedge\:{xy}=\mathrm{12} \\ $$$$\:\:\:{x}=\mathrm{3},{y}=\mathrm{4}\:{or}\:{x}=\mathrm{4},{y}=\mathrm{3} \\ $$$$ \\ $$$$\left({x},{y}\right)=\left(\mathrm{2},\mathrm{3}\right),\left(\mathrm{3},\mathrm{2}\right),\left(\mathrm{2},\mathrm{4}\right),\left(\mathrm{4},\mathrm{2}\right),\left(\mathrm{3},\mathrm{4}\right),\left(\mathrm{4},\mathrm{3}\right) \\ $$

Commented by mr W last updated on 19/Mar/21

very nice solution sir!

$${very}\:{nice}\:{solution}\:{sir}! \\ $$

Commented by Rasheed.Sindhi last updated on 19/Mar/21

THαnKs Sir!  Actually I felt that the answer is  unnoticed at all! Even the questioner  isn′t given any type of response!!  So I request you to see it!  Thanks for response.

$$\mathcal{TH}\alpha{n}\mathcal{K}{s}\:\mathcal{S}{ir}! \\ $$$$\mathcal{A}{ctually}\:{I}\:{felt}\:{that}\:{the}\:{answer}\:{is} \\ $$$${unnoticed}\:{at}\:{all}!\:\mathcal{E}{ven}\:{the}\:{questioner} \\ $$$${isn}'{t}\:{given}\:{any}\:{type}\:{of}\:{response}!! \\ $$$$\mathcal{S}{o}\:{I}\:{request}\:{you}\:{to}\:{see}\:{it}! \\ $$$${Thanks}\:{for}\:{response}. \\ $$

Commented by mr W last updated on 19/Mar/21

maybe he is just not used to give  feedback at all, as some other people.  i tried in a little different way and  got exactly the same results as you.

$${maybe}\:{he}\:{is}\:{just}\:{not}\:{used}\:{to}\:{give} \\ $$$${feedback}\:{at}\:{all},\:{as}\:{some}\:{other}\:{people}. \\ $$$${i}\:{tried}\:{in}\:{a}\:{little}\:{different}\:{way}\:{and} \\ $$$${got}\:{exactly}\:{the}\:{same}\:{results}\:{as}\:{you}. \\ $$

Commented by Rasheed.Sindhi last updated on 20/Mar/21

Please  S^(H^A R) E  your way  S^I R!  I′m interested in an alternate.

$$\mathcal{P}{lease}\:\:\mathcal{S}^{\mathcal{H}^{\mathcal{A}} \mathcal{R}} \mathcal{E}\:\:{your}\:{way}\:\:\mathcal{S}^{\mathcal{I}} \mathcal{R}! \\ $$$${I}'{m}\:{interested}\:{in}\:{an}\:{alternate}. \\ $$

Answered by mr W last updated on 20/Mar/21

9(x+y)^2 −(81+xy)(x+y)+210=0  Δ=(81+xy)^2 −7560=n^2   ⇒(xy+81nn)(xy+81−n)=7560=pq  ⇒xy+81+n=p ∧ xy+81−n=q  ⇒xy=((p+q)/2)−81^(∗∗))  ∧ n=((p−q)/2)^(∗))   ^∗ ) p≥q, p and q are both even or odd  ^(∗∗) ) ((p+q)/2)>81 ⇒p+q>162  x+y=((xy+81±n)/(18))=((p or q)/(18))   ⇒ at least p or q is a multiple of 18.    pq=7560 ⇒q<(√(7560))=87  if q=18m<87 ⇒m<5    pq=18×2^2 ×3×5×7  only following cases canfulfill above:  (with p underlined)  pq =18×2×210 ⇒x+y=2∧xy=42 ×        =18×3×140 ⇒x+y=3∧xy=16 ×        =18×5×84 ⇒x+y=5∧xy=6 ✓        =18×6×70 ⇒x+y=6∧xy=8 ✓        =18×7×60 ⇒x+y=7∧xy=12 ✓        =18×10×42 ⇒x+y=10∧xy=30 ×        no need to go further, since         xy should ≤(((x+y)/2))^2 , but upon        here xy>(((x+y)/2))^2 .    summary: we got following solutions  x,y=(2,3), (2,4), (3,4)

$$\mathrm{9}\left({x}+{y}\right)^{\mathrm{2}} −\left(\mathrm{81}+{xy}\right)\left({x}+{y}\right)+\mathrm{210}=\mathrm{0} \\ $$$$\Delta=\left(\mathrm{81}+{xy}\right)^{\mathrm{2}} −\mathrm{7560}={n}^{\mathrm{2}} \\ $$$$\Rightarrow\left({xy}+\mathrm{81}{nn}\right)\left({xy}+\mathrm{81}−{n}\right)=\mathrm{7560}={pq} \\ $$$$\Rightarrow{xy}+\mathrm{81}+{n}={p}\:\wedge\:{xy}+\mathrm{81}−{n}={q} \\ $$$$\Rightarrow{xy}=\frac{{p}+{q}}{\mathrm{2}}−\mathrm{81}\:^{\left.\ast\ast\right)} \:\wedge\:{n}=\frac{{p}−{q}}{\mathrm{2}}\:^{\left.\ast\right)} \\ $$$$\left.\:^{\ast} \right)\:{p}\geqslant{q},\:{p}\:{and}\:{q}\:{are}\:{both}\:{even}\:{or}\:{odd} \\ $$$$\left.\:^{\ast\ast} \right)\:\frac{{p}+{q}}{\mathrm{2}}>\mathrm{81}\:\Rightarrow{p}+{q}>\mathrm{162} \\ $$$${x}+{y}=\frac{{xy}+\mathrm{81}\pm{n}}{\mathrm{18}}=\frac{{p}\:{or}\:{q}}{\mathrm{18}}\: \\ $$$$\Rightarrow\:{at}\:{least}\:{p}\:{or}\:{q}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{18}. \\ $$$$ \\ $$$${pq}=\mathrm{7560}\:\Rightarrow{q}<\sqrt{\mathrm{7560}}=\mathrm{87} \\ $$$${if}\:{q}=\mathrm{18}{m}<\mathrm{87}\:\Rightarrow{m}<\mathrm{5} \\ $$$$ \\ $$$${pq}=\mathrm{18}×\mathrm{2}^{\mathrm{2}} ×\mathrm{3}×\mathrm{5}×\mathrm{7} \\ $$$${only}\:{following}\:{cases}\:{canfulfill}\:{above}: \\ $$$$\left({with}\:{p}\:{underlined}\right) \\ $$$${pq}\:=\mathrm{18}×\mathrm{2}×\underline{\mathrm{210}}\:\Rightarrow{x}+{y}=\mathrm{2}\wedge{xy}=\mathrm{42}\:× \\ $$$$\:\:\:\:\:\:=\mathrm{18}×\mathrm{3}×\underline{\mathrm{140}}\:\Rightarrow{x}+{y}=\mathrm{3}\wedge{xy}=\mathrm{16}\:× \\ $$$$\:\:\:\:\:\:=\underline{\mathrm{18}×\mathrm{5}}×\mathrm{84}\:\Rightarrow{x}+{y}=\mathrm{5}\wedge{xy}=\mathrm{6}\:\checkmark \\ $$$$\:\:\:\:\:\:=\underline{\mathrm{18}×\mathrm{6}}×\mathrm{70}\:\Rightarrow{x}+{y}=\mathrm{6}\wedge{xy}=\mathrm{8}\:\checkmark \\ $$$$\:\:\:\:\:\:=\underline{\mathrm{18}×\mathrm{7}}×\mathrm{60}\:\Rightarrow{x}+{y}=\mathrm{7}\wedge{xy}=\mathrm{12}\:\checkmark \\ $$$$\:\:\:\:\:\:=\underline{\mathrm{18}×\mathrm{10}}×\mathrm{42}\:\Rightarrow{x}+{y}=\mathrm{10}\wedge{xy}=\mathrm{30}\:× \\ $$$$\:\:\:\:\:\:{no}\:{need}\:{to}\:{go}\:{further},\:{since}\: \\ $$$$\:\:\:\:\:\:{xy}\:{should}\:\leqslant\left(\frac{{x}+{y}}{\mathrm{2}}\right)^{\mathrm{2}} ,\:{but}\:{upon} \\ $$$$\:\:\:\:\:\:{here}\:{xy}>\left(\frac{{x}+{y}}{\mathrm{2}}\right)^{\mathrm{2}} . \\ $$$$ \\ $$$${summary}:\:{we}\:{got}\:{following}\:{solutions} \\ $$$${x},{y}=\left(\mathrm{2},\mathrm{3}\right),\:\left(\mathrm{2},\mathrm{4}\right),\:\left(\mathrm{3},\mathrm{4}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 20/Mar/21

Better Sir!

$$\mathcal{B}{etter}\:\mathcal{S}{ir}! \\ $$

Commented by mr W last updated on 20/Mar/21

thanks sir! our methods are similar.

$${thanks}\:{sir}!\:{our}\:{methods}\:{are}\:{similar}. \\ $$

Commented by Rasheed.Sindhi last updated on 21/Mar/21

��✌

Terms of Service

Privacy Policy

Contact: info@tinkutara.com