Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 135571 by bemath last updated on 14/Mar/21

               Σ_(k=1) ^∞  (k/((k+1)^2 +8)) =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{k}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}}\:=? \\ $$

Commented by EDWIN88 last updated on 14/Mar/21

i guess the series should be Σ_(k=1) ^∞  (k/((k^2 +1)^2 +8))

$$\mathrm{i}\:\mathrm{guess}\:\mathrm{the}\:\mathrm{series}\:\mathrm{should}\:\mathrm{be}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{k}}{\left(\mathrm{k}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}} \\ $$

Commented by dhgt last updated on 05/May/21

Answered by mnjuly1970 last updated on 14/Mar/21

divergent...

$${divergent}... \\ $$

Answered by Dwaipayan Shikari last updated on 14/Mar/21

Σ_(k=1) ^∞ (1/((k+1)^2 +8))=(1/(4(√2)i))Σ_(k=1) ^∞ (1/((k+1−2(√2)i)))−(1/((k+1+2(√2)i)))  =(1/(4(√2)i))(ψ(2+2(√2)i)−ψ(2−2(√2)i))  But Σ_(k=1) ^∞ (k/((k+1)^2 +8))→Diverges

$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}}=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}{i}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}{i}\right)}−\frac{\mathrm{1}}{\left({k}+\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}{i}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}{i}}\left(\psi\left(\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}{i}\right)−\psi\left(\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}{i}\right)\right) \\ $$$${But}\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}}\rightarrow{Diverges} \\ $$

Answered by EDWIN88 last updated on 14/Mar/21

If Σ_(k=1) ^∞  (k/((k^2 +1)^2 +8)) = Σ_(k=1) ^∞  (k/(k^4 +2k^2 +9))  = Σ_(k=1) ^∞  (k/((k^2 +3)^2 −(2k)^2 )) = Σ_(k=1) ^∞  (k/((k^2 +2k+3)(k^2 −2k+3)))  = (1/4)Σ_(k=1) ^∞  (1/(k^2 −2k+3)) − (1/(k^2 +2k+3))  = (1/4) [ (1/2)−(1/6)+(1/3)+(1/6)−(1/(18))+... ] , telescopic series  = (1/4)((1/2)+(1/3))= (5/(24))

$$\mathrm{If}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{k}}{\left(\mathrm{k}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}}\:=\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{k}}{\mathrm{k}^{\mathrm{4}} +\mathrm{2k}^{\mathrm{2}} +\mathrm{9}} \\ $$$$=\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{k}}{\left(\mathrm{k}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} −\left(\mathrm{2k}\right)^{\mathrm{2}} }\:=\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{k}}{\left(\mathrm{k}^{\mathrm{2}} +\mathrm{2k}+\mathrm{3}\right)\left(\mathrm{k}^{\mathrm{2}} −\mathrm{2k}+\mathrm{3}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} −\mathrm{2k}+\mathrm{3}}\:−\:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} +\mathrm{2k}+\mathrm{3}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\:\left[\:\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{18}}+...\:\right]\:,\:\mathrm{telescopic}\:\mathrm{series} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)=\:\frac{\mathrm{5}}{\mathrm{24}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com