Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 13563 by Tinkutara last updated on 21/May/17

Commented by Tinkutara last updated on 21/May/17

36. The velocity of the particle at a  distance x from origin is  (1) u + kx  (2) u − kx  (3) kx  (4) −kx  37. The velocity of the particle at time  t after start is  (1) u − kt  (2) ue^(−kt)   (3) e^(−kt)   (4) u − e^(−kt)

$$\mathrm{36}.\:\mathrm{The}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{distance}\:{x}\:\mathrm{from}\:\mathrm{origin}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:{u}\:+\:{kx} \\ $$$$\left(\mathrm{2}\right)\:{u}\:−\:{kx} \\ $$$$\left(\mathrm{3}\right)\:{kx} \\ $$$$\left(\mathrm{4}\right)\:−{kx} \\ $$$$\mathrm{37}.\:\mathrm{The}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{at}\:\mathrm{time} \\ $$$${t}\:\mathrm{after}\:\mathrm{start}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:{u}\:−\:{kt} \\ $$$$\left(\mathrm{2}\right)\:{ue}^{−{kt}} \\ $$$$\left(\mathrm{3}\right)\:{e}^{−{kt}} \\ $$$$\left(\mathrm{4}\right)\:{u}\:−\:{e}^{−{kt}} \\ $$

Commented by Tinkutara last updated on 21/May/17

Commented by Tinkutara last updated on 21/May/17

Answer these questions from paragraph.

$$\mathrm{Answer}\:\mathrm{these}\:\mathrm{questions}\:\mathrm{from}\:\mathrm{paragraph}. \\ $$

Answered by ajfour last updated on 21/May/17

(36).  a=−kv  v(dv/dx)=−kv  ∫_u ^(  v) dv=−k∫_0 ^(  x) dx  v−u=−kx  v=u−kx       [option  (2)]   .....(i)    (37).  a=−kv  (dv/dt)=−kv  ∫^( v) _(  u)  (dv/v)=−k∫_0 ^(  t) dt  ln ((v/u))=−kt  v=ue^(−kt)      [option  (2) ]    (38).  a=−kv    =−k(u−kx)          ..from  (i)  if k>0 , u>0  at t=0,  a=−ku  a=0  at  x=(u/k)  so a-x graph is linear with negative  a intercept and positive   x-intercept.  [option (3) ] .

$$\left(\mathrm{36}\right). \\ $$$$\mathrm{a}=−\mathrm{kv} \\ $$$$\mathrm{v}\frac{\mathrm{dv}}{\mathrm{dx}}=−\mathrm{kv} \\ $$$$\int_{\boldsymbol{\mathrm{u}}} ^{\:\:\boldsymbol{\mathrm{v}}} \mathrm{dv}=−\mathrm{k}\int_{\mathrm{0}} ^{\:\:\boldsymbol{\mathrm{x}}} \mathrm{dx} \\ $$$$\mathrm{v}−\mathrm{u}=−\mathrm{kx} \\ $$$$\boldsymbol{\mathrm{v}}=\boldsymbol{\mathrm{u}}−\boldsymbol{\mathrm{kx}}\:\:\:\:\:\:\:\left[\mathrm{option}\:\:\left(\mathrm{2}\right)\right]\:\:\:.....\left(\mathrm{i}\right) \\ $$$$ \\ $$$$\left(\mathrm{37}\right). \\ $$$$\mathrm{a}=−\mathrm{kv} \\ $$$$\frac{\mathrm{dv}}{\mathrm{dt}}=−\mathrm{kv} \\ $$$$\underset{\:\:\boldsymbol{\mathrm{u}}} {\int}^{\:\boldsymbol{\mathrm{v}}} \:\frac{\mathrm{dv}}{\mathrm{v}}=−\mathrm{k}\int_{\mathrm{0}} ^{\:\:\boldsymbol{\mathrm{t}}} \mathrm{dt} \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{v}}{\mathrm{u}}\right)=−\mathrm{kt} \\ $$$$\mathrm{v}=\mathrm{ue}^{−\boldsymbol{\mathrm{kt}}} \:\:\:\:\:\left[\mathrm{option}\:\:\left(\mathrm{2}\right)\:\right] \\ $$$$ \\ $$$$\left(\mathrm{38}\right). \\ $$$$\mathrm{a}=−\mathrm{kv} \\ $$$$\:\:=−\mathrm{k}\left(\mathrm{u}−\mathrm{kx}\right)\:\:\:\:\:\:\:\:\:\:..\mathrm{from}\:\:\left(\mathrm{i}\right) \\ $$$$\mathrm{if}\:\mathrm{k}>\mathrm{0}\:,\:\mathrm{u}>\mathrm{0} \\ $$$$\mathrm{at}\:\mathrm{t}=\mathrm{0},\:\:\mathrm{a}=−\mathrm{ku} \\ $$$$\mathrm{a}=\mathrm{0}\:\:\mathrm{at}\:\:\mathrm{x}=\frac{\mathrm{u}}{\mathrm{k}} \\ $$$$\mathrm{so}\:\mathrm{a}-\mathrm{x}\:\mathrm{graph}\:\mathrm{is}\:\mathrm{linear}\:\mathrm{with}\:\mathrm{negative} \\ $$$$\mathrm{a}\:\mathrm{intercept}\:\mathrm{and}\:\mathrm{positive} \\ $$$$\:\mathrm{x}-\mathrm{intercept}.\:\:\left[\mathrm{option}\:\left(\mathrm{3}\right)\:\right]\:. \\ $$

Commented by Tinkutara last updated on 21/May/17

Q 38. Why k > 0 implies u > 0? Answer  38 is not understood by me. Please  explain in detail Sir.

$$\mathrm{Q}\:\mathrm{38}.\:\mathrm{Why}\:{k}\:>\:\mathrm{0}\:\mathrm{implies}\:{u}\:>\:\mathrm{0}?\:\mathrm{Answer} \\ $$$$\mathrm{38}\:\mathrm{is}\:\mathrm{not}\:\mathrm{understood}\:\mathrm{by}\:\mathrm{me}.\:\mathrm{Please} \\ $$$$\mathrm{explain}\:\mathrm{in}\:\mathrm{detail}\:\mathrm{Sir}. \\ $$

Commented by ajfour last updated on 21/May/17

the case is of initial speed u in a  certain direction, that i may take  to be the positive direction; so u>0  what i meant that if u>0 and  k>0 both then object′s velocity goes  decreasing, but is always positive and  reaches zero in infinite time ;  the position coordinate goes near  and near its upper limit of x= (u/k),  because integrating velocity  x=∫_0 ^(  t) vdt=u∫_0 ^( t) e^(−kt) dt     =u[(e^(−kt) /(−k))]_(t=0) ^(t=t) =(u/k)(1−e^(−kt) )   as t→∞  , x→(u/k) .

$$\mathrm{the}\:\mathrm{case}\:\mathrm{is}\:\mathrm{of}\:\mathrm{initial}\:\mathrm{speed}\:\mathrm{u}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{certain}\:\mathrm{direction},\:\mathrm{that}\:\mathrm{i}\:\mathrm{may}\:\mathrm{take} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{direction};\:\mathrm{so}\:\boldsymbol{\mathrm{u}}>\mathrm{0} \\ $$$$\mathrm{what}\:\mathrm{i}\:\mathrm{meant}\:\mathrm{that}\:\mathrm{if}\:\mathrm{u}>\mathrm{0}\:\mathrm{and} \\ $$$$\boldsymbol{\mathrm{k}}>\mathrm{0}\:\mathrm{both}\:\mathrm{then}\:\mathrm{object}'\mathrm{s}\:\mathrm{velocity}\:\mathrm{goes} \\ $$$$\mathrm{decreasing},\:\mathrm{but}\:\mathrm{is}\:\mathrm{always}\:\mathrm{positive}\:\mathrm{and} \\ $$$$\mathrm{reaches}\:\mathrm{zero}\:\mathrm{in}\:\mathrm{infinite}\:\mathrm{time}\:; \\ $$$$\mathrm{the}\:\mathrm{position}\:\mathrm{coordinate}\:\mathrm{goes}\:\mathrm{near} \\ $$$$\mathrm{and}\:\mathrm{near}\:\mathrm{its}\:\mathrm{upper}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{x}=\:\frac{\mathrm{u}}{\mathrm{k}}, \\ $$$$\mathrm{because}\:\mathrm{integrating}\:\mathrm{velocity} \\ $$$$\mathrm{x}=\int_{\mathrm{0}} ^{\:\:\boldsymbol{\mathrm{t}}} \mathrm{vdt}=\mathrm{u}\int_{\mathrm{0}} ^{\:\boldsymbol{\mathrm{t}}} \mathrm{e}^{−\boldsymbol{\mathrm{kt}}} \mathrm{dt} \\ $$$$\:\:\:=\mathrm{u}\left[\frac{\mathrm{e}^{−\boldsymbol{\mathrm{kt}}} }{−\mathrm{k}}\right]_{\boldsymbol{\mathrm{t}}=\mathrm{0}} ^{\boldsymbol{\mathrm{t}}=\boldsymbol{\mathrm{t}}} =\frac{\mathrm{u}}{\mathrm{k}}\left(\mathrm{1}−\mathrm{e}^{−\boldsymbol{\mathrm{kt}}} \right)\: \\ $$$$\mathrm{as}\:\mathrm{t}\rightarrow\infty\:\:,\:\mathrm{x}\rightarrow\frac{\mathrm{u}}{\mathrm{k}}\:. \\ $$

Commented by Tinkutara last updated on 22/May/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com