Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 135757 by Dwaipayan Shikari last updated on 15/Mar/21

((1.1)/2)+(((1+(1/2))1)/2^2 )+(((1+(1/2)+(1/3))2)/2^3 )+(((1+(1/2)+(1/3)+(1/4))3)/2^4 )+(((1+(1/2)+(1/3)+(1/4)+(1/5))5)/2^5 )+...

$$\frac{\mathrm{1}.\mathrm{1}}{\mathrm{2}}+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)\mathrm{2}}{\mathrm{2}^{\mathrm{3}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)\mathrm{3}}{\mathrm{2}^{\mathrm{4}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}\right)\mathrm{5}}{\mathrm{2}^{\mathrm{5}} }+... \\ $$

Commented by Dwaipayan Shikari last updated on 15/Mar/21

My way was  Σ_(n=1) ^∞ H_n x^n =S  S=H_1 x+H_2 x^2 +H_3 x^3 +...      (H_n −H_(n−1) =(1/n))  S(1−x)=H_1 x+(H_2 −H_1 )x^2 +(H_3 −H_2 )x^3 +...  S(1−x)=x+(x^2 /2)+(x^3 /3)+...⇒S=((−log(1−x))/(1−x))  So  Σ_(n=1) ^∞ H_n F_n x^n =(1/( (√5)))Σ_(n=1) ^∞ H_n (((1+(√5))/2)x)^n −H_n (((1−(√5))/2)x)^n   =−(1/( (√5))).((log(1−((1+(√5))/2)x))/(1−((1+(√5))/2)x))+(1/( (√5))).((log(1−((1−(√5))/2)x))/(1−((1−(√5))/2)x))  x=(1/2)

$${My}\:{way}\:{was} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{H}_{{n}} {x}^{{n}} ={S} \\ $$$${S}={H}_{\mathrm{1}} {x}+{H}_{\mathrm{2}} {x}^{\mathrm{2}} +{H}_{\mathrm{3}} {x}^{\mathrm{3}} +...\:\:\:\:\:\:\left({H}_{{n}} −{H}_{{n}−\mathrm{1}} =\frac{\mathrm{1}}{{n}}\right) \\ $$$${S}\left(\mathrm{1}−{x}\right)={H}_{\mathrm{1}} {x}+\left({H}_{\mathrm{2}} −{H}_{\mathrm{1}} \right){x}^{\mathrm{2}} +\left({H}_{\mathrm{3}} −{H}_{\mathrm{2}} \right){x}^{\mathrm{3}} +... \\ $$$${S}\left(\mathrm{1}−{x}\right)={x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+...\Rightarrow{S}=\frac{−{log}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}} \\ $$$${So} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{H}_{{n}} {F}_{{n}} {x}^{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{H}_{{n}} \left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}\right)^{{n}} −{H}_{{n}} \left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}\right)^{{n}} \\ $$$$=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}.\frac{{log}\left(\mathrm{1}−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}\right)}{\mathrm{1}−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}.\frac{{log}\left(\mathrm{1}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}\right)}{\mathrm{1}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 15/Mar/21

Generalised  Σ_(n=1) ^∞ ((H_n F_n )/2^n ) =((3+(√5))/( (√5)))log(((3+(√5))/(3−(√5))))  (H_n =Σ_(k=1) ^n (1/k)   and F_(n−1) +F_(n−2) =F_n )

$${Generalised} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} {F}_{{n}} }{\mathrm{2}^{{n}} }\:=\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{5}}}{log}\left(\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{3}−\sqrt{\mathrm{5}}}\right)\:\:\left({H}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\:\:\:{and}\:{F}_{{n}−\mathrm{1}} +{F}_{{n}−\mathrm{2}} ={F}_{{n}} \right) \\ $$

Commented by Olaf last updated on 15/Mar/21

Sorry sir, but it′s a pleasure for a bad  mathematician like me to try to answer  the questions.  But, if each time you give the answers  to your own questions, what is the  goal ?

$$\mathrm{Sorry}\:\mathrm{sir},\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{pleasure}\:\mathrm{for}\:\mathrm{a}\:\mathrm{bad} \\ $$$$\mathrm{mathematician}\:\mathrm{like}\:\mathrm{me}\:\mathrm{to}\:\mathrm{try}\:\mathrm{to}\:\mathrm{answer} \\ $$$$\mathrm{the}\:\mathrm{questions}. \\ $$$$\mathrm{But},\:\mathrm{if}\:\mathrm{each}\:\mathrm{time}\:\mathrm{you}\:\mathrm{give}\:\mathrm{the}\:\mathrm{answers} \\ $$$$\mathrm{to}\:\mathrm{your}\:\mathrm{own}\:\mathrm{questions},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{goal}\:? \\ $$

Commented by Dwaipayan Shikari last updated on 15/Mar/21

I am inexperienced in Mathematics sir!.Each time when  i find some nice things, i share with this Community. There  are many Nice teachers (like you sir!) to interact with me.  But sorry for that   😔

$${I}\:{am}\:{inexperienced}\:{in}\:{Mathematics}\:{sir}!.{Each}\:{time}\:{when} \\ $$$${i}\:{find}\:{some}\:{nice}\:{things},\:{i}\:{share}\:{with}\:{this}\:{Community}.\:{There} \\ $$$${are}\:{many}\:{Nice}\:{teachers}\:\left({like}\:{you}\:{sir}!\right)\:{to}\:{interact}\:{with}\:{me}. \\ $$$${But}\:{sorry}\:{for}\:{that}\: \\ $$😔

Answered by Olaf last updated on 15/Mar/21

We know that the function s  generates the serie Σ_(n∈N) F_n z^n  :  s(z) = (z/(1−z−z^2 )) = Σ_(n=0) ^∞ F_n z^n , ∣z∣ < (1/ϕ)  for z = (1/2) : Σ_(n=0) ^∞ (F_n /2^n ) = ((1/2)/(1−(1/2)−((1/2))^2 )) = 2  Let Ψ(z) = Σ_(n=0) ^∞ H_n F_n z^n   <work in progress />

$$\mathrm{We}\:\mathrm{know}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:{s} \\ $$$$\mathrm{generates}\:\mathrm{the}\:\mathrm{serie}\:\underset{{n}\in\mathbb{N}} {\sum}{F}_{{n}} {z}^{{n}} \:: \\ $$$${s}\left({z}\right)\:=\:\frac{{z}}{\mathrm{1}−{z}−{z}^{\mathrm{2}} }\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{F}_{{n}} {z}^{{n}} ,\:\mid{z}\mid\:<\:\frac{\mathrm{1}}{\varphi} \\ $$$$\mathrm{for}\:{z}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\::\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{F}_{{n}} }{\mathrm{2}^{{n}} }\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\:=\:\mathrm{2} \\ $$$$\mathrm{Let}\:\Psi\left({z}\right)\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{H}_{{n}} {F}_{{n}} {z}^{{n}} \\ $$$$<\mathrm{work}\:\mathrm{in}\:\mathrm{progress}\:/> \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com