Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 135932 by Engr_Jidda last updated on 17/Mar/21

Evaluate (1) ∫_0 ^1 ∫_0 ^x ∫_0 ^y (3x^2 +2y^2 −3z^2 )dxdydz  (2) ∫(2x−2)^3 dx  (3) ∫(((x−5)/(x^2 −10x+2)))dx

Evaluate(1)010x0y(3x2+2y23z2)dxdydz(2)(2x2)3dx(3)(x5x210x+2)dx

Answered by Olaf last updated on 17/Mar/21

1)  Ω = ∫_0 ^1 ∫_0 ^x ∫_0 ^y (3x^2 +2y^2 −3z^2 )dxdydz  Ω = ∫_0 ^1 ∫_0 ^x [3x^2 z+2y^2 z−z^3 ]_0 ^y dxdy  Ω = ∫_0 ^1 ∫_0 ^x (3x^2 y+y^3 )dxdy  Ω = ∫_0 ^1 [(3/2)x^2 y^2 +(y^4 /4)]_0 ^x dx  Ω = ∫_0 ^1 (7/4)x^4 dx = (7/4)  2)  ∫(2x−2)^3 dx = (1/8)(2x−2)^4 +C = 2(x−1)^4 +C  3)  ∫((x−5)/(x^2 −10x+2))dx = (1/2)∫ ((d(x^2 −10x+2))/(x^2 −10x+2)) = (1/2)ln∣x^2 −10x+2∣+C

1)Ω=010x0y(3x2+2y23z2)dxdydzΩ=010x[3x2z+2y2zz3]0ydxdyΩ=010x(3x2y+y3)dxdyΩ=01[32x2y2+y44]0xdxΩ=0174x4dx=742)(2x2)3dx=18(2x2)4+C=2(x1)4+C3)x5x210x+2dx=12d(x210x+2)x210x+2=12lnx210x+2+C

Answered by Ar Brandon last updated on 17/Mar/21

(3)  x−5=λ(d/dx)(x^2 −10x+2)+μ=λ(2x−10)+μ, λ=(1/2), μ=0  ∫((x−5)/(x^2 −10x+2))dx=(1/2)∫((2x−10)/(x^2 −10x+2))dx=((ln∣x^2 −10x+2∣)/2)+C

(3)x5=λddx(x210x+2)+μ=λ(2x10)+μ,λ=12,μ=0x5x210x+2dx=122x10x210x+2dx=lnx210x+22+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com