All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 135932 by Engr_Jidda last updated on 17/Mar/21
Evaluate(1)∫01∫0x∫0y(3x2+2y2−3z2)dxdydz(2)∫(2x−2)3dx(3)∫(x−5x2−10x+2)dx
Answered by Olaf last updated on 17/Mar/21
1)Ω=∫01∫0x∫0y(3x2+2y2−3z2)dxdydzΩ=∫01∫0x[3x2z+2y2z−z3]0ydxdyΩ=∫01∫0x(3x2y+y3)dxdyΩ=∫01[32x2y2+y44]0xdxΩ=∫0174x4dx=742)∫(2x−2)3dx=18(2x−2)4+C=2(x−1)4+C3)∫x−5x2−10x+2dx=12∫d(x2−10x+2)x2−10x+2=12ln∣x2−10x+2∣+C
Answered by Ar Brandon last updated on 17/Mar/21
(3)x−5=λddx(x2−10x+2)+μ=λ(2x−10)+μ,λ=12,μ=0∫x−5x2−10x+2dx=12∫2x−10x2−10x+2dx=ln∣x2−10x+2∣2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com