Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 135957 by mathmax by abdo last updated on 17/Mar/21

1) find ∫  (dx/((x+1)^2 (x−3)^4 ))  2) deduce the decomposition of F(x)=(1/((x+1)^2 (x−3)^4 ))

1)finddx(x+1)2(x3)42)deducethedecompositionofF(x)=1(x+1)2(x3)4

Answered by Dwaipayan Shikari last updated on 17/Mar/21

(1/((x+1)^2 (x−3)^4 ))=(1/((x−3)^2 ))((1/((x+1)(x−3))))^2 =τ(x)  =(1/(16))((1/((x−3)^2 (x+1)^2 ))−(2/((x−3)^3 (x+1)))+(1/((x−3)^4 )))  =(1/(256))((1/((x−3)^2 ))+(1/((x+1)^2 ))−(2/((x−3)(x+1))))−(1/(32(x−3)^2 ))((1/(x−3))−(1/(x+1)))+(1/(16(x−3)^4 ))  =(1/(256(x−3)^2 ))+(1/(256(x+1)^2 ))−(1/(512(x−3)))+(1/(512(x+1)))−(1/(32(x−3)^3 ))+(1/(128(x−3)^2 ))−(1/(512(x−3)))+(1/(512(x+1)))+(1/(16(x−3)^4 ))  =(3/(256(x−3)^2 ))−(1/(256(x−3)))+(1/(256(x+1)))+(1/(256(x+1)^2 ))+(1/(32(x−3)^3 ))+(1/(16(x−3)^4 ))

1(x+1)2(x3)4=1(x3)2(1(x+1)(x3))2=τ(x)=116(1(x3)2(x+1)22(x3)3(x+1)+1(x3)4)=1256(1(x3)2+1(x+1)22(x3)(x+1))132(x3)2(1x31x+1)+116(x3)4=1256(x3)2+1256(x+1)21512(x3)+1512(x+1)132(x3)3+1128(x3)21512(x3)+1512(x+1)+116(x3)4=3256(x3)21256(x3)+1256(x+1)+1256(x+1)2+132(x3)3+116(x3)4

Answered by mathmax by abdo last updated on 17/Mar/21

1) Φ=∫  (dx/((x+1)^2 (x−3)^4 ))  ⇒Φ=∫ (dx/((((x−3)/(x+1)))^4 (x+1)^6 ))  we do the changement ((x−3)/(x+1))=t ⇒x−3=tx+t ⇒(1−t)x=3+t ⇒  x=((3+t)/(1−t)) ⇒ (dx/dt)=((1−t−(3+t)(−1))/((1−t)^2 ))=((1−t+3+t)/((1−t)^2 ))=(4/((1−t)^2 ))  and  x+1 =((3+t)/(1−t))+1 =((3+t+1−t)/(1−t))=(4/(1−t)) ⇒  Φ=∫  (1/(t^4 ((4/(1−t)))^6 ))((4dt)/((1−t)^2 )) =(1/4^5 )∫   (((1−t)^4 )/t^4 )dt  =(1/4^5 )∫  (((t−1)^4 )/t^4 ) dt =(1/4^5 )∫ (((t^2 −2t+1)^2 )/t^4 )dt  =(1/4^5 )∫  (((t^2 −2t)^2  +2(t^2 −2t)+1)/t^4 )dt  =(1/4^5 )∫  ((t^4 −4t^3  +4t^2  +2t^2 −4t +1)/t^4 )dt  =(1/4^5 )∫  ((t^4 −4t^3 +6t^2 −4t+1)/t^4 )dt  =(1/4^5 ){ ∫ (1−(4/t)+(6/t^2 )−(4/t^3 )+(1/t^4 ))dt}  ⇒4^5  .Φ =t−4ln∣t∣−(6/t)−4.(1/(−3+1))t^(−3+1)  +(1/(−4+1))t^(−4+1)  +C  =t−4ln∣t∣−(6/t) +(2/t^2 )−(1/(3t^3 )) +C  =((x−3)/(x+1))−4ln∣((x−3)/(x+1))∣ −6.((x+1)/(x−3)) +2(((x+1)/(x−3)))^2 −(1/3)(((x+1)/(x−3)))^3  +C ⇒  Φ=(1/4^5 ){((x−3)/(x+1))−4ln∣((x−3)/(x+1))∣−((6(x+1))/(x−3))+2(((x+1)/(x−3)))^2 −(1/3)(((x+1)/(x−3)))^2 } +C

1)Φ=dx(x+1)2(x3)4Φ=dx(x3x+1)4(x+1)6wedothechangementx3x+1=tx3=tx+t(1t)x=3+tx=3+t1tdxdt=1t(3+t)(1)(1t)2=1t+3+t(1t)2=4(1t)2andx+1=3+t1t+1=3+t+1t1t=41tΦ=1t4(41t)64dt(1t)2=145(1t)4t4dt=145(t1)4t4dt=145(t22t+1)2t4dt=145(t22t)2+2(t22t)+1t4dt=145t44t3+4t2+2t24t+1t4dt=145t44t3+6t24t+1t4dt=145{(14t+6t24t3+1t4)dt}45.Φ=t4lnt6t4.13+1t3+1+14+1t4+1+C=t4lnt6t+2t213t3+C=x3x+14lnx3x+16.x+1x3+2(x+1x3)213(x+1x3)3+CΦ=145{x3x+14lnx3x+16(x+1)x3+2(x+1x3)213(x+1x3)2}+C

Commented by mathmax by abdo last updated on 17/Mar/21

2) F(x)=(d/dx)Φ  (((x−3)/(x+1)))^((1))  =((x+1−(x−3))/((x+1)^2 ))=(4/((x+1)^2 ))  =(ln∣((x−3)/(x+1))∣)^((1))  =(4/((x+1)^2 ))×((x+1)/(x−3)) =(4/((x+1)(x−3)))=(1/(x−3))−(1/(x+1))  (((x+1)/(x−3)))^((1))  =((x−3−(x+1))/((x−3)^2 ))=((−4)/((x−3)^2 ))  {(((x+1)/(x−3)))^2 }^((1))  =2(((x+1)/(x−3)))×((−4)/((x−3)^2 ))=−((8(x+1))/((x−3)^3 ))  =−8((x−3+4)/((x−3)^3 ))=−(8/((x−3)^2 ))−((32)/((x−3)^3 ))  (((x+1)/(x−3)))^3 }^((1))  =3(((x+1)/(x−3)))^2 .((−4)/((x−3)^2 )) =−12(((x+1)^2 )/((x−3)^3 ))  =−12 (((x−3+4)^2 )/((x−3)^3 )) =−12.(((x−3)^2 +8(x−3)+16)/((x−3)^3 ))  =−12{(1/((x−3)))+(8/((x−3)^2 ))+((16)/((x−3)^3 ))}  rest to collect the values...

2)F(x)=ddxΦ(x3x+1)(1)=x+1(x3)(x+1)2=4(x+1)2=(lnx3x+1)(1)=4(x+1)2×x+1x3=4(x+1)(x3)=1x31x+1(x+1x3)(1)=x3(x+1)(x3)2=4(x3)2{(x+1x3)2}(1)=2(x+1x3)×4(x3)2=8(x+1)(x3)3=8x3+4(x3)3=8(x3)232(x3)3(x+1x3)3}(1)=3(x+1x3)2.4(x3)2=12(x+1)2(x3)3=12(x3+4)2(x3)3=12.(x3)2+8(x3)+16(x3)3=12{1(x3)+8(x3)2+16(x3)3}resttocollectthevalues...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com