Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136076 by physicstutes last updated on 18/Mar/21

find the area between the curve y = 3 + 2x −x^2 , the x−axis  and the line y = 3.   find the volume of the solid generated when the curve is  rotated completely about the line y = 3

$$\mathrm{find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{between}\:\mathrm{the}\:\mathrm{curve}\:{y}\:=\:\mathrm{3}\:+\:\mathrm{2}{x}\:−{x}^{\mathrm{2}} ,\:\mathrm{the}\:{x}−\mathrm{axis} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{line}\:{y}\:=\:\mathrm{3}. \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}\:\mathrm{generated}\:\mathrm{when}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{is} \\ $$$$\mathrm{rotated}\:\mathrm{completely}\:\mathrm{about}\:\mathrm{the}\:\mathrm{line}\:{y}\:=\:\mathrm{3} \\ $$

Answered by mr W last updated on 18/Mar/21

Area A=(2/3)×(4×4−2×1)=((28)/3)

$${Area}\:{A}=\frac{\mathrm{2}}{\mathrm{3}}×\left(\mathrm{4}×\mathrm{4}−\mathrm{2}×\mathrm{1}\right)=\frac{\mathrm{28}}{\mathrm{3}} \\ $$

Commented by mr W last updated on 18/Mar/21

Commented by mr W last updated on 18/Mar/21

volume V  x^2 −2x−3+y=0  (x_2 −x_1 )^2 =(x_2 +x_1 )^2 −4x_1 x_2                       =2^2 −4(−3+y)=4(4−y)  x_2 −x_1 =2(√(4−y))  dV=2π(3−y)(x_2 −x_1 )dy  V=∫_0 ^3 2π(3−y)(x_2 −x_1 )dy    =4π∫_0 ^3 (3−y)(√(4−y))dy    =4π∫_3 ^0 (3−y)(√(1+3−y))d(3−y)    =4π∫_0 ^3 u(√(1+u))du    =4π×(2/(15))[(u+1)^(3/2) (3u−2)]_0 ^3     =4π×((2×58)/(15))    =((464π)/(15))

$${volume}\:{V} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}+{y}=\mathrm{0} \\ $$$$\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)^{\mathrm{2}} =\left({x}_{\mathrm{2}} +{x}_{\mathrm{1}} \right)^{\mathrm{2}} −\mathrm{4}{x}_{\mathrm{1}} {x}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}^{\mathrm{2}} −\mathrm{4}\left(−\mathrm{3}+{y}\right)=\mathrm{4}\left(\mathrm{4}−{y}\right) \\ $$$${x}_{\mathrm{2}} −{x}_{\mathrm{1}} =\mathrm{2}\sqrt{\mathrm{4}−{y}} \\ $$$${dV}=\mathrm{2}\pi\left(\mathrm{3}−{y}\right)\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right){dy} \\ $$$${V}=\int_{\mathrm{0}} ^{\mathrm{3}} \mathrm{2}\pi\left(\mathrm{3}−{y}\right)\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right){dy} \\ $$$$\:\:=\mathrm{4}\pi\int_{\mathrm{0}} ^{\mathrm{3}} \left(\mathrm{3}−{y}\right)\sqrt{\mathrm{4}−{y}}{dy} \\ $$$$\:\:=\mathrm{4}\pi\int_{\mathrm{3}} ^{\mathrm{0}} \left(\mathrm{3}−{y}\right)\sqrt{\mathrm{1}+\mathrm{3}−{y}}{d}\left(\mathrm{3}−{y}\right) \\ $$$$\:\:=\mathrm{4}\pi\int_{\mathrm{0}} ^{\mathrm{3}} {u}\sqrt{\mathrm{1}+{u}}{du} \\ $$$$\:\:=\mathrm{4}\pi×\frac{\mathrm{2}}{\mathrm{15}}\left[\left({u}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{3}{u}−\mathrm{2}\right)\right]_{\mathrm{0}} ^{\mathrm{3}} \\ $$$$\:\:=\mathrm{4}\pi×\frac{\mathrm{2}×\mathrm{58}}{\mathrm{15}} \\ $$$$\:\:=\frac{\mathrm{464}\pi}{\mathrm{15}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com