Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136170 by mnjuly1970 last updated on 19/Mar/21

            .....nice  calculus....     compute::  2li_2 (((−1)/2))−2li_2 ((1/2))+li_2 ((3/4))=??

$$\:\:\:\:\:\:\:\:\:\:\:\:.....{nice}\:\:{calculus}.... \\ $$$$\:\:\:{compute}:: \\ $$$$\mathrm{2}{li}_{\mathrm{2}} \left(\frac{−\mathrm{1}}{\mathrm{2}}\right)−\mathrm{2}{li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)+{li}_{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)=?? \\ $$$$ \\ $$

Answered by mindispower last updated on 19/Mar/21

li_2 (−x)−li_2 (1−x)+((li_2 (1−x^2 ))/2)=−(π^2 /(12))−ln(x)ln(1+x)....T  x=(1/2)  ⇔2li_2 (−(1/2))−2li_2 ((1/2))+li_2 ((3/4))=−(π^2 /6)−ln((1/2))ln((3/2))  (T) True  li_2 (x)=∫_0 ^x −((ln(1−t))/t)dt  f(x)=2li_2 (−x)−2li_2 (1−x)+li_2 (1−x^2 )  f′(x)=2((ln(1+x))/(−x))−2((ln(x))/(1−x))+((2xln(x^2 ))/(1−x^2 ))  ==−((2ln(1+x))/x)−((2ln(x))/(1−x))+((2ln(x))/(1−x))−((2ln(x))/(1+x))  =−2((ln(1+x))/x)−2((ln(x))/(1+x))  ∫((ln(x))/(1+x))=ln(x)ln(1+x)−∫((ln(1+x))/x)dx  f(x)=−2((ln(1+x))/x)−2ln(x)ln(1+x)+2∫((ln(1+x))/x)dx  =−2ln(x)ln(1+x)+c  f(0)=c=2li_2 (0)−2li_2 (1)+li_2 (1)  =−(π^2 /6)  ⇒f(x)=2li_2 (−x)−2li_2 (1−x)+li_2 (1−x^2 )=−(π^2 /6)−2ln(x)ln(1+x)  ⇔(T) true

$${li}_{\mathrm{2}} \left(−{x}\right)−{li}_{\mathrm{2}} \left(\mathrm{1}−{x}\right)+\frac{{li}_{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{2}}=−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−{ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right)....{T} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{2}{li}_{\mathrm{2}} \left(−\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{2}{li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)+{li}_{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$\left({T}\right)\:{True} \\ $$$${li}_{\mathrm{2}} \left({x}\right)=\int_{\mathrm{0}} ^{{x}} −\frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$${f}\left({x}\right)=\mathrm{2}{li}_{\mathrm{2}} \left(−{x}\right)−\mathrm{2}{li}_{\mathrm{2}} \left(\mathrm{1}−{x}\right)+{li}_{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$${f}'\left({x}\right)=\mathrm{2}\frac{{ln}\left(\mathrm{1}+{x}\right)}{−{x}}−\mathrm{2}\frac{{ln}\left({x}\right)}{\mathrm{1}−{x}}+\frac{\mathrm{2}{xln}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$==−\frac{\mathrm{2}{ln}\left(\mathrm{1}+{x}\right)}{{x}}−\frac{\mathrm{2}{ln}\left({x}\right)}{\mathrm{1}−{x}}+\frac{\mathrm{2}{ln}\left({x}\right)}{\mathrm{1}−{x}}−\frac{\mathrm{2}{ln}\left({x}\right)}{\mathrm{1}+{x}} \\ $$$$=−\mathrm{2}\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}−\mathrm{2}\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}} \\ $$$$\int\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}}={ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right)−\int\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx} \\ $$$${f}\left({x}\right)=−\mathrm{2}\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}−\mathrm{2}{ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right)+\mathrm{2}\int\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx} \\ $$$$=−\mathrm{2}{ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right)+{c} \\ $$$${f}\left(\mathrm{0}\right)={c}=\mathrm{2}{li}_{\mathrm{2}} \left(\mathrm{0}\right)−\mathrm{2}{li}_{\mathrm{2}} \left(\mathrm{1}\right)+{li}_{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$$=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{2}{li}_{\mathrm{2}} \left(−{x}\right)−\mathrm{2}{li}_{\mathrm{2}} \left(\mathrm{1}−\boldsymbol{{x}}\right)+\boldsymbol{{li}}_{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{2}{ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right) \\ $$$$\Leftrightarrow\left({T}\right)\:{true} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 19/Mar/21

thanks alot...

$${thanks}\:{alot}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com