Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 13622 by Tinkutara last updated on 21/May/17

Evaluate: ∫_0 ^(2π) e^(x/2) sin ((x/2) + (π/4))dx

Evaluate:02πex2sin(x2+π4)dx

Answered by ajfour last updated on 22/May/17

I=∫_0 ^(  2π) e^(x/2) sin ((x/2)+(π/4))dx  (I/2)=∫_0 ^(  2π) e^(x/2) sin ((x/2)+(π/4))(dx/2)  let  t=(x/2)   ⇒  dt=(dx/2)  when x=0, t=0 ;   and for x=2π, t=π  (I/2)=∫_0 ^(  π) e^t sin ((π/4)+t)dt    =[e^t sin ((π/4)+t)]_0 ^π −∫_0 ^(  π) e^t cos ((π/4)+t)dt    =−(1/(√2))(e^π +1)−[e^t cos ((π/4)+t)]_0 ^π                                +∫_0 ^(  π) e^t sin ((π/4)+t)dt  ⇒ (I/2)=−(1/(√2))(e^π +1)+(1/(√2))(e^π +1)+I  ⇒  I=0 .

I=02πex/2sin(x2+π4)dxI2=02πex/2sin(x2+π4)dx2lett=x2dt=dx2whenx=0,t=0;andforx=2π,t=πI2=0πetsin(π4+t)dt=[etsin(π4+t)]0π0πetcos(π4+t)dt=12(eπ+1)[etcos(π4+t)]0π+0πetsin(π4+t)dtI2=12(eπ+1)+12(eπ+1)+II=0.

Commented by ajfour last updated on 22/May/17

cannot you confirm the answer..

cannotyouconfirmtheanswer..

Commented by Tinkutara last updated on 22/May/17

Answer given is 0.

Answergivenis0.

Commented by ajfour last updated on 22/May/17

thanks, notice the difference !

thanks,noticethedifference!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com