Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 136346 by ZiYangLee last updated on 21/Mar/21

If 1,ω and ω^2  are the cube roots of unity,  prove that (1−ω)(1−ω^2 )(1−ω^4 )(1−ω^5 )=9

$$\mathrm{If}\:\mathrm{1},\omega\:\mathrm{and}\:\omega^{\mathrm{2}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}, \\ $$$$\mathrm{prove}\:\mathrm{that}\:\left(\mathrm{1}−\omega\right)\left(\mathrm{1}−\omega^{\mathrm{2}} \right)\left(\mathrm{1}−\omega^{\mathrm{4}} \right)\left(\mathrm{1}−\omega^{\mathrm{5}} \right)=\mathrm{9} \\ $$

Answered by Rasheed.Sindhi last updated on 21/Mar/21

(1−ω)(1−ω^2 )(1−ω^4 )(1−ω^5 )  (1−ω)(1−ω^2 )(1−ω^3 .ω)(1−ω^3 .ω^2 )  ={(1−ω)(1−ω^2 )}{(1−ω)(1−ω^2 )}  =(1−ω−ω^2 +ω^3 )^2   =(1−(ω+ω^2 )+ω^3 )^2   =(1−(−1)+1)^2 =3^2 =9  Proved

$$\left(\mathrm{1}−\omega\right)\left(\mathrm{1}−\omega^{\mathrm{2}} \right)\left(\mathrm{1}−\omega^{\mathrm{4}} \right)\left(\mathrm{1}−\omega^{\mathrm{5}} \right) \\ $$$$\left(\mathrm{1}−\omega\right)\left(\mathrm{1}−\omega^{\mathrm{2}} \right)\left(\mathrm{1}−\omega^{\mathrm{3}} .\omega\right)\left(\mathrm{1}−\omega^{\mathrm{3}} .\omega^{\mathrm{2}} \right) \\ $$$$=\left\{\left(\mathrm{1}−\omega\right)\left(\mathrm{1}−\omega^{\mathrm{2}} \right)\right\}\left\{\left(\mathrm{1}−\omega\right)\left(\mathrm{1}−\omega^{\mathrm{2}} \right)\right\} \\ $$$$=\left(\mathrm{1}−\omega−\omega^{\mathrm{2}} +\omega^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{1}−\left(\omega+\omega^{\mathrm{2}} \right)+\omega^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{1}−\left(−\mathrm{1}\right)+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} =\mathrm{9} \\ $$$${Proved} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com