All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 136401 by mathmax by abdo last updated on 21/Mar/21
find∫0∞arctan(x2)x4+1dx
Answered by Dwaipayan Shikari last updated on 21/Mar/21
I(α)=∫0∞tan−1(αx2)x4+1dxI′(α)=∫0∞x2(1+α2x4)(x4+1)dx=1α2−1∫0∞1x2(1+x4)−1x2(1+α2x4)dx=1α2−1∫0∞1x2−x21+x4−1x2+α2x21+α2x4dxα2x4=t⇒4α2x3=dtdx=−14(α2−1)∫0∞u−14(1+u)du+14(α2−1)∫0∞αt−14(1+t)dt=−2π4(α2−1)+2α4(α2−1)πI(α)=π22∫α−1α2−1dαα=u2=π2∫u2−uu4−1du=π2∫u(u+1)(u2+1)du=π22∫u1+u−u2−u1+u2duI(α)=π22tan−1(u)+π42log(1+u2(1+u)2)+Cα=0⇒I(0)=0+C=0⇒C=0I(α)=π22tan−1(u)+π42log(1+u2(1+u)2)I(1)=π282−π42log(2)
Commented by mathmax by abdo last updated on 22/Mar/21
thankssir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com