Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136401 by mathmax by abdo last updated on 21/Mar/21

find ∫_0 ^∞   ((arctan(x^2 ))/(x^4  +1))dx

find0arctan(x2)x4+1dx

Answered by Dwaipayan Shikari last updated on 21/Mar/21

I(α)=∫_0 ^∞ ((tan^(−1) (αx^2 ))/(x^4 +1))dx  I′(α)=∫_0 ^∞ (x^2 /((1+α^2 x^4 )(x^4 +1)))dx  =(1/(α^2 −1))∫_0 ^∞ (1/(x^2 (1+x^4 )))−(1/(x^2 (1+α^2 x^4 )))dx  =(1/(α^2 −1))∫_0 ^∞ (1/x^2 )−(x^2 /(1+x^4 ))−(1/x^2 )+((α^2 x^2 )/(1+α^2 x^4 ))dx           α^2 x^4 =t⇒4α^2 x^3 =(dt/dx)  =−(1/(4(α^2 −1)))∫_0 ^∞ (u^(−(1/4)) /((1+u)))du+(1/(4(α^2 −1)))∫_0 ^∞ (((√α)t^(−(1/4)) )/((1+t)))dt  =−(((√2)π)/(4(α^2 −1)))+((√(2α))/(4(α^2 −1)))π  I(α)=(π/(2(√2)))∫(((√α)−1)/(α^2 −1))dα       α=u^2   =(π/( (√2)))∫((u^2 −u)/(u^4 −1))du=(π/( (√2)))∫(u/((u+1)(u^2 +1)))du=(π/( 2(√2)))∫(u/(1+u))−((u^2 −u)/(1+u^2 ))du  I(α)=(π/(2(√2)))tan^(−1) (u)+(π/(4(√2)))log(((1+u^2 )/((1+u)^2 )))+C  α=0 ⇒I(0)=0+C=0⇒C=0  I(α)=(π/(2(√2)))tan^(−1) (u)+(π/(4(√2)))log(((1+u^2 )/((1+u)^2 )))  I(1)=(π^2 /(8(√2)))−(π/(4(√2)))log(2)

I(α)=0tan1(αx2)x4+1dxI(α)=0x2(1+α2x4)(x4+1)dx=1α2101x2(1+x4)1x2(1+α2x4)dx=1α2101x2x21+x41x2+α2x21+α2x4dxα2x4=t4α2x3=dtdx=14(α21)0u14(1+u)du+14(α21)0αt14(1+t)dt=2π4(α21)+2α4(α21)πI(α)=π22α1α21dαα=u2=π2u2uu41du=π2u(u+1)(u2+1)du=π22u1+uu2u1+u2duI(α)=π22tan1(u)+π42log(1+u2(1+u)2)+Cα=0I(0)=0+C=0C=0I(α)=π22tan1(u)+π42log(1+u2(1+u)2)I(1)=π282π42log(2)

Commented by mathmax by abdo last updated on 22/Mar/21

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com