Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136425 by Ar Brandon last updated on 21/Mar/21

If α>0 and β>0, prove  ∫_0 ^∞ ((ln(αx))/(β^2 +x^2 ))dx=(π/(2β))ln(αβ)

$$\mathrm{If}\:\alpha>\mathrm{0}\:\mathrm{and}\:\beta>\mathrm{0},\:\mathrm{prove} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\alpha\mathrm{x}\right)}{\beta^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\frac{\pi}{\mathrm{2}\beta}\mathrm{ln}\left(\alpha\beta\right) \\ $$

Commented byDwaipayan Shikari last updated on 21/Mar/21

Φ=∫_0 ^∞ ((log(α))/(β^2 +x^2 ))+∫_0 ^∞ ((log(x))/(x^2 +β^2 ))dx  =((πlog(α))/(2β))+τ′(0)  τ(η)=∫_0 ^∞ (x^η /(β^2 +x^2 ))dx=β^(η−1) ∫_0 ^∞ (u^η /(u^2 +1))du     x=βu  =(1/2)β^(η−1) ∫_0 ^∞ (t^(((η+1)/2)−1) /((t+1)^((η/2)+(1/2)−(η/2)+(1/2)) ))du=(β^(η−1) /2).((Γ(((η+1)/2))Γ((1/2)−(η/2)))/(Γ(2)))  =(β^(η−1) /2).(π/(cos(((πη)/2))))  τ′(η)=((β^(η−1) log(β))/2).(π/(cos(((πη)/2))))+((β^(n−1) π^2 )/4)sec(((πη)/2))tan(((πη)/2))  τ′(0)=((log(β)π)/(2β))  Φ=((πlog(α))/(2β))+((πlog(β))/(2β))=((πlog(αβ))/(2β))

$$\Phi=\int_{\mathrm{0}} ^{\infty} \frac{{log}\left(\alpha\right)}{\beta^{\mathrm{2}} +{x}^{\mathrm{2}} }+\int_{\mathrm{0}} ^{\infty} \frac{{log}\left({x}\right)}{{x}^{\mathrm{2}} +\beta^{\mathrm{2}} }{dx} \\ $$ $$=\frac{\pi{log}\left(\alpha\right)}{\mathrm{2}\beta}+\tau'\left(\mathrm{0}\right) \\ $$ $$\tau\left(\eta\right)=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\eta} }{\beta^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}=\beta^{\eta−\mathrm{1}} \int_{\mathrm{0}} ^{\infty} \frac{{u}^{\eta} }{{u}^{\mathrm{2}} +\mathrm{1}}{du}\:\:\:\:\:{x}=\beta{u} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\beta^{\eta−\mathrm{1}} \int_{\mathrm{0}} ^{\infty} \frac{{t}^{\frac{\eta+\mathrm{1}}{\mathrm{2}}−\mathrm{1}} }{\left({t}+\mathrm{1}\right)^{\frac{\eta}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\eta}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}} }{du}=\frac{\beta^{\eta−\mathrm{1}} }{\mathrm{2}}.\frac{\Gamma\left(\frac{\eta+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\eta}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}\right)} \\ $$ $$=\frac{\beta^{\eta−\mathrm{1}} }{\mathrm{2}}.\frac{\pi}{{cos}\left(\frac{\pi\eta}{\mathrm{2}}\right)} \\ $$ $$\tau'\left(\eta\right)=\frac{\beta^{\eta−\mathrm{1}} {log}\left(\beta\right)}{\mathrm{2}}.\frac{\pi}{{cos}\left(\frac{\pi\eta}{\mathrm{2}}\right)}+\frac{\beta^{{n}−\mathrm{1}} \pi^{\mathrm{2}} }{\mathrm{4}}{sec}\left(\frac{\pi\eta}{\mathrm{2}}\right){tan}\left(\frac{\pi\eta}{\mathrm{2}}\right) \\ $$ $$\tau'\left(\mathrm{0}\right)=\frac{{log}\left(\beta\right)\pi}{\mathrm{2}\beta} \\ $$ $$\Phi=\frac{\pi{log}\left(\alpha\right)}{\mathrm{2}\beta}+\frac{\pi{log}\left(\beta\right)}{\mathrm{2}\beta}=\frac{\pi{log}\left(\alpha\beta\right)}{\mathrm{2}\beta} \\ $$ $$ \\ $$

Commented byAr Brandon last updated on 21/Mar/21

Thanks

Commented byDwaipayan Shikari last updated on 21/Mar/21

  😃

$$ \\ $$ 😃\\n

Answered by mathmax by abdo last updated on 21/Mar/21

Φ=∫_0 ^∞  ((log(αx))/(x^2  +β^2 ))dx ⇒Φ=∫_0 ^∞  ((logα+logx)/(x^2  +β^2 ))dx  =logα∫_0 ^∞  (dx/(x^2  +β^2 ))(→x=βu) +∫_0 ^∞  ((logx)/(x^2  +β^2 ))dx(→x=βu)  =logα ∫_0 ^∞  ((βdu)/(β^2 (1+u^2 ))) +∫_0 ^∞  ((log(βu))/(β^2 (1+u^2 )))βdu  =((logα)/β).(π/2) +(1/β)∫_0 ^∞   ((logβ +logu)/(1+u^2 ))du  =((πlogα)/(2β)) +((logβ)/β).(π/2) +(1/β)∫_0 ^∞  ((logu)/(1+u^2 ))du(→0)  =((π(logα+logβ))/(2β)) =(π/(2β))log(αβ)

$$\Phi=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{log}\left(\alpha\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\beta^{\mathrm{2}} }\mathrm{dx}\:\Rightarrow\Phi=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{log}\alpha+\mathrm{logx}}{\mathrm{x}^{\mathrm{2}} \:+\beta^{\mathrm{2}} }\mathrm{dx} \\ $$ $$=\mathrm{log}\alpha\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\beta^{\mathrm{2}} }\left(\rightarrow\mathrm{x}=\beta\mathrm{u}\right)\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{logx}}{\mathrm{x}^{\mathrm{2}} \:+\beta^{\mathrm{2}} }\mathrm{dx}\left(\rightarrow\mathrm{x}=\beta\mathrm{u}\right) \\ $$ $$=\mathrm{log}\alpha\:\int_{\mathrm{0}} ^{\infty} \:\frac{\beta\mathrm{du}}{\beta^{\mathrm{2}} \left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)}\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{log}\left(\beta\mathrm{u}\right)}{\beta^{\mathrm{2}} \left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)}\beta\mathrm{du} \\ $$ $$=\frac{\mathrm{log}\alpha}{\beta}.\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{1}}{\beta}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{log}\beta\:+\mathrm{logu}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\mathrm{du} \\ $$ $$=\frac{\pi\mathrm{log}\alpha}{\mathrm{2}\beta}\:+\frac{\mathrm{log}\beta}{\beta}.\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{1}}{\beta}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{logu}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\mathrm{du}\left(\rightarrow\mathrm{0}\right) \\ $$ $$=\frac{\pi\left(\mathrm{log}\alpha+\mathrm{log}\beta\right)}{\mathrm{2}\beta}\:=\frac{\pi}{\mathrm{2}\beta}\mathrm{log}\left(\alpha\beta\right) \\ $$

Commented byAr Brandon last updated on 21/Mar/21

Thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com