Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 136433 by metamorfose last updated on 21/Mar/21

Σ_(k=0) ^n C_(2n+1) ^(2k+1) 8^k =...???

$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{\mathrm{2}{n}+\mathrm{1}} ^{\mathrm{2}{k}+\mathrm{1}} \mathrm{8}^{{k}} =...??? \\ $$

Answered by Olaf last updated on 22/Mar/21

  (2(√2)+1)^(2n+1)  = Σ_(p=0) ^(2n+1) C_p ^(2n+1) (2(√2))^p   (−2(√2)+1)^(2n+1)  = Σ_(p=0) ^(2n+1) (−1)^p C_p ^(2n+1) (2(√2))^p   (1+2(√2))^(2n+1) −(1−2(√2))^(2n+1)  =  = Σ_(p=0) ^(2n+1) [1−(−1)^p ]C_p ^(2n+1) (2(√2))^p   = 2Σ_(k=0) ^n C_(2k+1) ^(2n+1) (2(√2))^(2k+1)   =4(√2) Σ_(k=0) ^n C_(2k+1) ^(2n+1) 8^k   ⇒ Σ_(k=0) ^n C_(2k+1) ^(2n+1) 8^k  = (1/( 4(√2)))[(1+2(√2))^(2n+1) −(1−2(√2))^(2n+1) ]

$$ \\ $$$$\left(\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}{n}+\mathrm{1}} \:=\:\underset{{p}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}\mathrm{C}_{{p}} ^{\mathrm{2}{n}+\mathrm{1}} \left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{{p}} \\ $$$$\left(−\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}{n}+\mathrm{1}} \:=\:\underset{{p}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{p}} \mathrm{C}_{{p}} ^{\mathrm{2}{n}+\mathrm{1}} \left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{{p}} \\ $$$$\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} −\left(\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} \:= \\ $$$$=\:\underset{{p}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}\left[\mathrm{1}−\left(−\mathrm{1}\right)^{{p}} \right]\mathrm{C}_{{p}} ^{\mathrm{2}{n}+\mathrm{1}} \left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{{p}} \\ $$$$=\:\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{C}_{\mathrm{2}{k}+\mathrm{1}} ^{\mathrm{2}{n}+\mathrm{1}} \left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}{k}+\mathrm{1}} \\ $$$$=\mathrm{4}\sqrt{\mathrm{2}}\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{C}_{\mathrm{2}{k}+\mathrm{1}} ^{\mathrm{2}{n}+\mathrm{1}} \mathrm{8}^{{k}} \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{C}_{\mathrm{2}{k}+\mathrm{1}} ^{\mathrm{2}{n}+\mathrm{1}} \mathrm{8}^{{k}} \:=\:\frac{\mathrm{1}}{\:\mathrm{4}\sqrt{\mathrm{2}}}\left[\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} −\left(\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} \right] \\ $$

Commented by metamorfose last updated on 22/Mar/21

thnx sir

$${thnx}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com