Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 136494 by liberty last updated on 22/Mar/21

5((√(1−x)) +(√(1+x)) )= 6x + 8(√(1−x^2 ))

$$\mathrm{5}\left(\sqrt{\mathrm{1}−{x}}\:+\sqrt{\mathrm{1}+{x}}\:\right)=\:\mathrm{6}{x}\:+\:\mathrm{8}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\: \\ $$

Answered by MJS_new last updated on 22/Mar/21

I get 2 solutions  x_1 =((24)/(25))  x_2 =cos ((π+2arcsin ((√2)/(10)))/3) ≈.415962301  the path is: let t=(√(1−x)) then transform,  square and solve the 4^(th)  degree for t, then  test the 4 solutions  you can also try with x=cos 2t but it′s not much  easier...

$$\mathrm{I}\:\mathrm{get}\:\mathrm{2}\:\mathrm{solutions} \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{24}}{\mathrm{25}} \\ $$$${x}_{\mathrm{2}} =\mathrm{cos}\:\frac{\pi+\mathrm{2arcsin}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{10}}}{\mathrm{3}}\:\approx.\mathrm{415962301} \\ $$$$\mathrm{the}\:\mathrm{path}\:\mathrm{is}:\:\mathrm{let}\:{t}=\sqrt{\mathrm{1}−{x}}\:\mathrm{then}\:\mathrm{transform}, \\ $$$$\mathrm{square}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{for}\:{t},\:\mathrm{then} \\ $$$$\mathrm{test}\:\mathrm{the}\:\mathrm{4}\:\mathrm{solutions} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{also}\:\mathrm{try}\:\mathrm{with}\:{x}=\mathrm{cos}\:\mathrm{2}{t}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{much} \\ $$$$\mathrm{easier}... \\ $$

Answered by mr W last updated on 22/Mar/21

5((√(1−x))+(√(1+x)))=6(x+1)−6+8(√(1−x^2 ))   let p=(√(1+x)) ≥0        q=(√(1−x)) ≥0  ⇒p^2 =1+x  ⇒q^2 =1−x  ⇒p^2 +q^2 =2  ⇒p=(√2) cos θ ≥0  ⇒q=(√2) sin θ ≥0    5(p+q)=6p^2 −6+8pq  5(√2)(cos θ+sin θ)=2(3 cos 2θ+4 sin 2θ)  ((√2)/2)(cos θ+sin θ)=(3/5) cos 2θ+(4/5) sin 2θ  let α=tan^(−1) (4/3)  ⇒cos (θ−(π/4))=cos (2θ−α)  ⇒2θ−α=2kπ±(θ−(π/4))  ⇒2θ−α=2kπ+θ−(π/4)  ⇒θ_1 =2kπ−(π/4)+α with k=0  or  ⇒2θ−α=2kπ−θ+(π/4)  ⇒3θ=2kπ+(π/4)+α  ⇒θ_(2,3,4) =((2kπ)/3)+(π/(12))+(α/3) with k=0,1,2  since cos θ≥0, sin θ≥0, only valid:  θ_1 =−(π/4)+α  θ_2 =(π/(12))+(α/3)  x=p^2 −1     =((√2) cos θ)^2 −1     =2 cos^2  (−(π/4)+tan^(−1) (4/3))−1=((24)/(25))=0.96  or     =2 cos^2  ((π/(12))+(1/3)tan^(−1) (4/3))−1≈0.415962

$$\mathrm{5}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)=\mathrm{6}\left({x}+\mathrm{1}\right)−\mathrm{6}+\mathrm{8}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\: \\ $$$${let}\:{p}=\sqrt{\mathrm{1}+{x}}\:\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\:{q}=\sqrt{\mathrm{1}−{x}}\:\geqslant\mathrm{0} \\ $$$$\Rightarrow{p}^{\mathrm{2}} =\mathrm{1}+{x} \\ $$$$\Rightarrow{q}^{\mathrm{2}} =\mathrm{1}−{x} \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow{p}=\sqrt{\mathrm{2}}\:\mathrm{cos}\:\theta\:\geqslant\mathrm{0} \\ $$$$\Rightarrow{q}=\sqrt{\mathrm{2}}\:\mathrm{sin}\:\theta\:\geqslant\mathrm{0} \\ $$$$ \\ $$$$\mathrm{5}\left({p}+{q}\right)=\mathrm{6}{p}^{\mathrm{2}} −\mathrm{6}+\mathrm{8}{pq} \\ $$$$\mathrm{5}\sqrt{\mathrm{2}}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)=\mathrm{2}\left(\mathrm{3}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{4}\:\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$$$\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)=\frac{\mathrm{3}}{\mathrm{5}}\:\mathrm{cos}\:\mathrm{2}\theta+\frac{\mathrm{4}}{\mathrm{5}}\:\mathrm{sin}\:\mathrm{2}\theta \\ $$$${let}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{cos}\:\left(\theta−\frac{\pi}{\mathrm{4}}\right)=\mathrm{cos}\:\left(\mathrm{2}\theta−\alpha\right) \\ $$$$\Rightarrow\mathrm{2}\theta−\alpha=\mathrm{2}{k}\pi\pm\left(\theta−\frac{\pi}{\mathrm{4}}\right) \\ $$$$\Rightarrow\mathrm{2}\theta−\alpha=\mathrm{2}{k}\pi+\theta−\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\theta_{\mathrm{1}} =\mathrm{2}{k}\pi−\frac{\pi}{\mathrm{4}}+\alpha\:{with}\:{k}=\mathrm{0} \\ $$$${or} \\ $$$$\Rightarrow\mathrm{2}\theta−\alpha=\mathrm{2}{k}\pi−\theta+\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{3}\theta=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{4}}+\alpha \\ $$$$\Rightarrow\theta_{\mathrm{2},\mathrm{3},\mathrm{4}} =\frac{\mathrm{2}{k}\pi}{\mathrm{3}}+\frac{\pi}{\mathrm{12}}+\frac{\alpha}{\mathrm{3}}\:{with}\:{k}=\mathrm{0},\mathrm{1},\mathrm{2} \\ $$$${since}\:\mathrm{cos}\:\theta\geqslant\mathrm{0},\:\mathrm{sin}\:\theta\geqslant\mathrm{0},\:{only}\:{valid}: \\ $$$$\theta_{\mathrm{1}} =−\frac{\pi}{\mathrm{4}}+\alpha \\ $$$$\theta_{\mathrm{2}} =\frac{\pi}{\mathrm{12}}+\frac{\alpha}{\mathrm{3}} \\ $$$${x}={p}^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:=\left(\sqrt{\mathrm{2}}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:=\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\left(−\frac{\pi}{\mathrm{4}}+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{3}}\right)−\mathrm{1}=\frac{\mathrm{24}}{\mathrm{25}}=\mathrm{0}.\mathrm{96} \\ $$$${or} \\ $$$$\:\:\:=\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\left(\frac{\pi}{\mathrm{12}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{3}}\right)−\mathrm{1}\approx\mathrm{0}.\mathrm{415962} \\ $$

Answered by ajfour last updated on 23/Mar/21

x=cos 2θ  5(√2)(sin θ+cos θ)=6cos 2θ+8sin 2θ  10sin (θ+(π/4))=10sin (2θ+tan^(−1) (3/4))  first let the two arguments  be same ⇒  θ=(π/4)−tan^(−1) (3/4)  x=cos ((π/2)−2tan^(−1) (3/4))    =sin (2tan^(−1) (3/4))    =2sin (tan^(−1) (3/4))cos (tan^(−1) (3/4))    =2×(3/5)×(4/5)=((24)/(25)).

$${x}=\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\mathrm{5}\sqrt{\mathrm{2}}\left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)=\mathrm{6cos}\:\mathrm{2}\theta+\mathrm{8sin}\:\mathrm{2}\theta \\ $$$$\mathrm{10sin}\:\left(\theta+\frac{\pi}{\mathrm{4}}\right)=\mathrm{10sin}\:\left(\mathrm{2}\theta+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$${first}\:{let}\:{the}\:{two}\:{arguments} \\ $$$${be}\:{same}\:\Rightarrow \\ $$$$\theta=\frac{\pi}{\mathrm{4}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}} \\ $$$${x}=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{2tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\:\:=\mathrm{sin}\:\left(\mathrm{2tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\:\:=\mathrm{2sin}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\right)\mathrm{cos}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\:\:=\mathrm{2}×\frac{\mathrm{3}}{\mathrm{5}}×\frac{\mathrm{4}}{\mathrm{5}}=\frac{\mathrm{24}}{\mathrm{25}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com