Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136497 by mnjuly1970 last updated on 22/Mar/21

                 ......nice    calculus.....      prove::           ∫_0 ^( 1) (1/(1+ln^2 (x)))dx=∫_(0 ) ^( ∞) ((sin(x))/(1+x))dx

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......{nice}\:\:\:\:{calculus}..... \\ $$$$\:\:\:\:{prove}::\:\: \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{ln}^{\mathrm{2}} \left({x}\right)}{dx}=\int_{\mathrm{0}\:} ^{\:\infty} \frac{{sin}\left({x}\right)}{\mathrm{1}+{x}}{dx} \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 22/Mar/21

∫_0 ^∞ ((sin(x))/(1+x))dx  =∫_0 ^∞ ∫_0 ^∞ e^(−(x+1)t) sin(x)dtdx  =(1/(2i))∫_0 ^∞ ∫_0 ^∞ e^(−t) e^(−(t−i)x) −e^(−t) e^(−(t+i)x) dxdt  =(1/(2i))∫_0 ^∞ (e^(−t) /(t−i))−(e^(−t) /(t+i))dt  =∫_0 ^∞ (e^(−t) /(t^2 +1))dt         −t=log(u)⇒1=−(1/u).(du/dt)  =∫_0 ^1 (1/(1+log^2 (u)))du

$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}\right)}{\mathrm{1}+{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\left({x}+\mathrm{1}\right){t}} {sin}\left({x}\right){dtdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {e}^{−\left({t}−{i}\right){x}} −{e}^{−{t}} {e}^{−\left({t}+{i}\right){x}} {dxdt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{{t}−{i}}−\frac{{e}^{−{t}} }{{t}+{i}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}{dt}\:\:\:\:\:\:\:\:\:−{t}={log}\left({u}\right)\Rightarrow\mathrm{1}=−\frac{\mathrm{1}}{{u}}.\frac{{du}}{{dt}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{log}^{\mathrm{2}} \left({u}\right)}{du} \\ $$

Commented by mnjuly1970 last updated on 22/Mar/21

 grateful mr payan...

$$\:{grateful}\:{mr}\:{payan}... \\ $$

Answered by mindispower last updated on 22/Mar/21

t=−ln(x)  =∫_0 ^∞ (e^(−t) /(1+t^2 ))dt=∫_0 ^∞ (((t+i)−(t−i))/(2i(t+i)(t−i)))e^(−t)   =(1/(2i))(∫_0 ^∞ (e^(−t) /(t−i))dt−∫_0 ^∞ (e^(−t) /(t+i)))  =Im ∫_0 ^∞ (e^(−t) /(t−i))dt  let z=it  =Im ∫_0 ^(i∞) (e^(iz) /(i(t+1))).(dz/i)=Im(−∫_0 ^(i∞) (e^(iz) /(t+1))dz)...2  let C_R =[0,R]∪(Re^(iθ) ,θ∈[0,(π/2)])_D ∪[iR,0]  ∫_C_R  (e^(iz) /(z+1))dz=0..1,z→(e^(iz) /(z+1)) holomorphic without pols  over C_R   ∫_D (e^(iz) /(z+1))=0⇒..2  (1)&(2)⇒  ∫_0 ^∞ (e^(iz) /(z+1))dz=−∫_0 ^(i∞) (e^(iz) /(z+1))dz  we get Im ∫_0 ^∞ (e^(iz) /(z+1))dz=∫_0 ^∞ ((sin(z))/(z+1))dz

$${t}=−{ln}\left({x}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\int_{\mathrm{0}} ^{\infty} \frac{\left({t}+{i}\right)−\left({t}−{i}\right)}{\mathrm{2}{i}\left({t}+{i}\right)\left({t}−{i}\right)}{e}^{−{t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{{t}−{i}}{dt}−\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{{t}+{i}}\right) \\ $$$$={Im}\:\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{{t}−{i}}{dt} \\ $$$${let}\:{z}={it} \\ $$$$={Im}\:\int_{\mathrm{0}} ^{{i}\infty} \frac{{e}^{{iz}} }{{i}\left({t}+\mathrm{1}\right)}.\frac{{dz}}{{i}}={Im}\left(−\int_{\mathrm{0}} ^{{i}\infty} \frac{{e}^{{iz}} }{{t}+\mathrm{1}}{dz}\right)...\mathrm{2} \\ $$$${let}\:{C}_{{R}} =\left[\mathrm{0},{R}\right]\cup\left({Re}^{{i}\theta} ,\theta\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\right)_{{D}} \cup\left[{iR},\mathrm{0}\right] \\ $$$$\int_{{C}_{{R}} } \frac{{e}^{{iz}} }{{z}+\mathrm{1}}{dz}=\mathrm{0}..\mathrm{1},{z}\rightarrow\frac{{e}^{{iz}} }{{z}+\mathrm{1}}\:{holomorphic}\:{without}\:{pols} \\ $$$${over}\:{C}_{{R}} \\ $$$$\int_{{D}} \frac{{e}^{{iz}} }{{z}+\mathrm{1}}=\mathrm{0}\Rightarrow..\mathrm{2}\:\:\left(\mathrm{1}\right)\&\left(\mathrm{2}\right)\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{iz}} }{{z}+\mathrm{1}}{dz}=−\int_{\mathrm{0}} ^{{i}\infty} \frac{{e}^{{iz}} }{{z}+\mathrm{1}}{dz} \\ $$$${we}\:{get}\:{Im}\:\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{iz}} }{{z}+\mathrm{1}}{dz}=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({z}\right)}{{z}+\mathrm{1}}{dz} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 22/Mar/21

thank you so much mr power...

$${thank}\:{you}\:{so}\:{much}\:{mr}\:{power}... \\ $$

Commented by mindispower last updated on 22/Mar/21

pleasur

$${pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com