Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 136555 by mnjuly1970 last updated on 23/Mar/21

         ....nice    ......   calculus....     prove that          𝛗=∫_0 ^( ∞) ((ln(1+x^2 ))/((1+x^2 )^2 ))dx=(π/2)ln(2)−(π/4)       ::::::::

....nice......calculus....provethatϕ=0ln(1+x2)(1+x2)2dx=π2ln(2)π4::::::::

Answered by mnjuly1970 last updated on 23/Mar/21

   f(a)=∫_0 ^( ∞) (dx/((1+x^2 )^a ))    ...(a>(1/2))       f(a)=^(x^2 =y) (1/2)∫_0 ^( ∞) (y^((−1)/2) /((1+y)^a ))dy=β((1/2),a−(1/2))       f(a)=(1/2)((((√π) Γ(a−(1/2)))/(Γ(a))))       goal::  𝛗=−f ′(2)               f ′(a)=((√π)/2) (((Γ′(a−(1/2)).Γ(a)−Γ′(a).Γ(a−(1/2)))/(Γ^2 (a))))            f ′(2)=((√π)/2)(((ψ((3/2))Γ((3/2))−ψ(2)Γ((3/2) ))/1^2 ))      =((√π)/2)(((√π)/2)(2−γ−2ln(2)−(1−γ)))         ∴   −𝛗=(π/4)(2−γ−2ln(2)−1+γ)               =(π/4)(1−2ln(2))=(π/4)−(π/2)ln(2)..✓               ∴  𝛗=(π/2)ln(2)−(π/4) ....                    m.n

f(a)=0dx(1+x2)a...(a>12)f(a)=x2=y120y12(1+y)ady=β(12,a12)f(a)=12(πΓ(a12)Γ(a))goal::ϕ=f(2)f(a)=π2(Γ(a12).Γ(a)Γ(a).Γ(a12)Γ2(a))f(2)=π2(ψ(32)Γ(32)ψ(2)Γ(32)12)=π2(π2(2γ2ln(2)(1γ)))ϕ=π4(2γ2ln(2)1+γ)=π4(12ln(2))=π4π2ln(2)..ϕ=π2ln(2)π4....m.n

Answered by mindispower last updated on 23/Mar/21

=∫_0 ^(π/2) ((ln((1/(cos^2 (x)))))/((1+tg^2 (x))^2 ))dtg(x)  =∫_0 ^(π/2) −2cos^2 (x)ln(cos(x))dx..A  β(a,b)=2∫_0 ^(π/2) cos^(2a−1) (x).sin^(2b−1) (x)dx  A=−(1/2)∂^a β(a,b)∣(a,b)=((3/2),(1/2))  =−(1/2)β(a,b)(Ψ(a)−Ψ(a+b))  =−(1/2).((Γ((1/2))Γ((3/2)))/(Γ(2)))(Ψ((3/2))−Ψ(2))  =−(1/2).(1/2).π(2+Ψ((1/2))−(1−γ))  =−(π/4)(1−2ln(2))=((πln(2))/4)−(π/4)

=0π2ln(1cos2(x))(1+tg2(x))2dtg(x)=0π22cos2(x)ln(cos(x))dx..Aβ(a,b)=20π2cos2a1(x).sin2b1(x)dxA=12aβ(a,b)(a,b)=(32,12)=12β(a,b)(Ψ(a)Ψ(a+b))=12.Γ(12)Γ(32)Γ(2)(Ψ(32)Ψ(2))=12.12.π(2+Ψ(12)(1γ))=π4(12ln(2))=πln(2)4π4

Commented by mnjuly1970 last updated on 23/Mar/21

thanks alot....

thanksalot....

Answered by Dwaipayan Shikari last updated on 23/Mar/21

ϑ(α)=∫_0 ^∞ (((1+x^2 )^α )/((1+x^2 )^2 ))dx=∫_0 ^∞ (1/((1+x^2 )^(2−α) ))dx  =(1/2)∫_0 ^∞ (u^((1/2)−1) /((1+u)^((1/2)+(3/2)−α) ))du=(1/2).((Γ((1/2))Γ((3/2)−α))/(Γ(2−α)))  ϑ′(α)=((−(√π) Γ(2−α)Γ′((3/2)−α)+(√π) Γ(2−α)ψ(2−α)Γ((3/2)−α))/(2Γ^2 (2−α)))  ϑ′(0)=((−(π/2)ψ((3/2))+(π/2)ψ(2))/2)=(π/4)(−γ+1+γ−2log(2))  =(π/4)−(π/2)log(2)  −ϑ′(0)=∫_0 ^∞ ((log(x^2 +1))/((x^2 +1)^2 ))dx=(π/2)log(2)−(π/4)

ϑ(α)=0(1+x2)α(1+x2)2dx=01(1+x2)2αdx=120u121(1+u)12+32αdu=12.Γ(12)Γ(32α)Γ(2α)ϑ(α)=πΓ(2α)Γ(32α)+πΓ(2α)ψ(2α)Γ(32α)2Γ2(2α)ϑ(0)=π2ψ(32)+π2ψ(2)2=π4(γ+1+γ2log(2))=π4π2log(2)ϑ(0)=0log(x2+1)(x2+1)2dx=π2log(2)π4

Commented by mnjuly1970 last updated on 23/Mar/21

thanking...

thanking...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com