All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 136570 by mnjuly1970 last updated on 23/Mar/21
.......nice.....calculus.....Ω=∑∞n=0cosn(x).cos(nx)=?solution::::Ω=12∑∞n=0cosn−1(x){cos(x−nx)+cos(x+nx)∴2Ω=∑∞n=0cosn−1(x).cos(n−1)x+∑∞n=0cosn−1(x).cos(n+1)x=1+∑∞n=1cosn−1(x).cos(n−1)x+1cos2(x)∑∞n=0cosn+1(x).cos(n+1)x=1+Ω+1cos2(x)(Ω−1)Ω(1−1cos2(x))=1−1cos2(x)∴Ω=1.................
Answered by Dwaipayan Shikari last updated on 23/Mar/21
∑∞n=0cosn(x)cos(nx)g=cosx=1+∑∞n=1cos(nx)gn=1+12∑∞n=1(eixg)n+(e−ixg)n=1+12(1(1−eixg)+1(1−e−ixg))=1+12(1−e−ixg+1−eixg1−2gcosx+g2)=1+12(2−2gcosx1−cos2x)=1+1=2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com