Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 136582 by physicstutes last updated on 23/Mar/21

Use De′Moivre′s theorem to prove that   Σ_(r=0) ^∞ cos rx = (1/2) and find a value(or expression) for Σ_(r=0) ^∞ sin rx  assume that this two series were convergent.

UseDeMoivrestheoremtoprovethatr=0cosrx=12andfindavalue(orexpression)forr=0sinrxassumethatthistwoserieswereconvergent.

Answered by Ar Brandon last updated on 23/Mar/21

Σ_(r=0) ^∞ e^(irx) =(1/(1−e^(ix) ))=(e^(−(x/2)i) /(e^(−(x/2)i) −e^((x/2)i) ))=(e^(−(x/2)i) /(−2isin(x/2)))=(e^(−(x/2)i−((3π)/2)i) /(2sin(x/2)))                =((cos((x/2)+((3π)/2))−isin((x/2)+((3π)/2)))/(2sin(x/2)))=((sin(x/2)+icos(x/2))/(2sin(x/2)))  Σ_(r=0) ^∞ cos(rx)=ReΣ_(r=0) ^∞ e^(irx) =(1/2)  Σ_(r=0) ^∞ sin(rx)=ImΣ_(r=0) ^∞ e^(irx) =(1/2)cot((x/2))

r=0eirx=11eix=ex2iex2iex2i=ex2i2isinx2=ex2i3π2i2sinx2=cos(x2+3π2)isin(x2+3π2)2sinx2=sinx2+icosx22sinx2r=0cos(rx)=Rer=0eirx=12r=0sin(rx)=Imr=0eirx=12cot(x2)

Commented by physicstutes last updated on 23/Mar/21

perfect

perfect

Terms of Service

Privacy Policy

Contact: info@tinkutara.com