Question and Answers Forum

All Question   Topic List

Question Number 136604 by bemath last updated on 23/Mar/21

What is the equation of a tangent to a circle whose equation is x^2+y^2−2x−4y=1 at point (1+√5,3)\n

Answered by EDWIN88 last updated on 23/Mar/21

step(1) is the point on the circle ?  (1+(√5))^2 +3^2 −2(1+(√5))−4.3 =    6+2(√5) + 9−2−2(√5) −12 = 1 (yes it is on the circle )  step(2) find slope the line from the center   to the given point ⇒ m=((3−2)/(1+(√5)−1)) = (1/( (√5)))  step(3) find the slope of tangent line   is −(1/m) = −(√5)  step(4) we get the tangent has equation  y = −(√5) (x−1−(√5)) + 3  y=−x(√5) +(√5) + 8

step(1)isthepointonthecircle? Extra close brace or missing open brace Extra close brace or missing open brace step(2)findslopethelinefromthecenter tothegivenpointm=321+51=15 step(3)findtheslopeoftangentline is1m=5 Extra close brace or missing open brace Extra close brace or missing open brace y=x5+5+8

Commented bybemath last updated on 24/Mar/21

Answered by greg_ed last updated on 24/Mar/21

step (1) : find the centre I of the cercle (C ) given.  (C) : x^2 +y^2 −2x−4y = 1 ⇒   I((2/2) ; (4/2)) ⇒  I(1 ; 2).  step (2) : M(x;y) ∈ (D ) the tangent and A(1+(√5) ; 3)  IA^(→) .AM^(→)  = 0^→  ⇔  (1+(√5)−1)(x−1−(√5))+(3−2)(y−3) =  0 ⇔  (√5)(x−1−(√5))+y−3 = 0 ⇔  x(√5)+y−(√5)−5−3 = 0 ⇔  x(√5)+y−(√5)−8 = 0 ⇔  x(√5)+y−((√5)+8) = 0.

step(1):findthecentreIofthecercle(C)given. (C):x2+y22x4y=1 I(22;42) I(1;2). step(2):M(x;y)(D)thetangentandA(1+5;3) IA.AM=0 (1+51)(x15)+(32)(y3)=0 5(x15)+y3=0 x5+y553=0 x5+y58=0 Extra close brace or missing open brace

Commented bybemath last updated on 24/Mar/21

via vector

viavector

Terms of Service

Privacy Policy

Contact: info@tinkutara.com