Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136651 by mhabs last updated on 24/Mar/21

Answered by Ñï= last updated on 24/Mar/21

∫_0 ^(π/2) (1/(1+(atan x)^2 ))dx=^(t=tan x) ∫_0 ^∞ (1/(1+a^2 t^2 ))∙(1/(1+t^2 ))dt  =(1/(1−a^2 ))∫_0 ^∞ (((−a^2 )/(1+a^2 t^2 ))+(1/(1+t^2 )))dt=(1/(1−a^2 )){(π/2)−(a^2 /a)tan^(−1) (at)∣_0 ^∞ }  =(1/(1−a^2 ))(1−a)(π/2)  =(π/(2(1+a)))

0π/211+(atanx)2dx=t=tanx011+a2t211+t2dt=11a20(a21+a2t2+11+t2)dt=11a2{π2a2atan1(at)0}=11a2(1a)π2=π2(1+a)

Answered by Dwaipayan Shikari last updated on 24/Mar/21

∫_0 ^(π/2) (1/(1+(atan(x))^2 ))dx      atan(x)=u  asec^2 (x)=(du/dx)  =a∫_0 ^∞ (1/((1+u^2 )(a^2 +u^2 )))du=(a/(a^2 −1))∫_0 ^∞ (1/(1+u^2 ))−(1/(a^2 +u^2 ))du  =((πa)/(2(a^2 −1)))−(π/2)=(π/(2(a+1)))

0π211+(atan(x))2dxatan(x)=uasec2(x)=dudx=a01(1+u2)(a2+u2)du=aa21011+u21a2+u2du=πa2(a21)π2=π2(a+1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com