Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 136693 by liberty last updated on 25/Mar/21

Commented by Olaf last updated on 25/Mar/21

f(x) = mx^3 +5x^2 +kx−18  = (6−x−x^2 )(−mx−3)  =(x^2 +x−6)(mx+3)  = mx^3 +(3+m)x^2 +(3−6m)x−18  By identification :   { ((3+m = 5      (1))),((3−6m = k  (2))) :}  (1) : m = 2  (2) : k = 3−6m = −9  then f(x) = 2x^3 +5x^2 −9x−18  = (6−x−x^2 )(−2x−3)

$${f}\left({x}\right)\:=\:{mx}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} +{kx}−\mathrm{18} \\ $$$$=\:\left(\mathrm{6}−{x}−{x}^{\mathrm{2}} \right)\left(−{mx}−\mathrm{3}\right) \\ $$$$=\left({x}^{\mathrm{2}} +{x}−\mathrm{6}\right)\left({mx}+\mathrm{3}\right) \\ $$$$=\:{mx}^{\mathrm{3}} +\left(\mathrm{3}+{m}\right){x}^{\mathrm{2}} +\left(\mathrm{3}−\mathrm{6}{m}\right){x}−\mathrm{18} \\ $$$$\mathrm{By}\:\mathrm{identification}\:: \\ $$$$\begin{cases}{\mathrm{3}+{m}\:=\:\mathrm{5}\:\:\:\:\:\:\left(\mathrm{1}\right)}\\{\mathrm{3}−\mathrm{6}{m}\:=\:{k}\:\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\left(\mathrm{1}\right)\::\:{m}\:=\:\mathrm{2} \\ $$$$\left(\mathrm{2}\right)\::\:{k}\:=\:\mathrm{3}−\mathrm{6}{m}\:=\:−\mathrm{9} \\ $$$$\mathrm{then}\:{f}\left({x}\right)\:=\:\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{9}{x}−\mathrm{18} \\ $$$$=\:\left(\mathrm{6}−{x}−{x}^{\mathrm{2}} \right)\left(−\mathrm{2}{x}−\mathrm{3}\right) \\ $$

Answered by Rasheed.Sindhi last updated on 25/Mar/21

6−x−x^2 =−(x+3)(x−2)  ∴ x+3 & x−2 are also factors of f(x)  By synthetic division   determinant (((2)),m,5,k,(−18)),(,,(2m),(4m+10),(8m+2k+20)),((−3)),m,(2m+5),(4m+k+10),(8m+2k+2=0_(4m+k=−1) )),(,,(−3m),(3m−15),),(,m,(−m+5),(7m+k−5=0),))  4m+k=−1  7m+k=5  3m=6⇒m=2  k=5−7m=5−7(2)=−9

$$\mathrm{6}−{x}−{x}^{\mathrm{2}} =−\left({x}+\mathrm{3}\right)\left({x}−\mathrm{2}\right) \\ $$$$\therefore\:{x}+\mathrm{3}\:\&\:{x}−\mathrm{2}\:{are}\:{also}\:{factors}\:{of}\:{f}\left({x}\right) \\ $$$$\mathcal{B}{y}\:{synthetic}\:{division} \\ $$$$\begin{array}{|c|c|c|c|c|}{\left.\mathrm{2}\right)}&\hline{{m}}&\hline{\mathrm{5}}&\hline{{k}}&\hline{−\mathrm{18}}\\{}&\hline{}&\hline{\mathrm{2}{m}}&\hline{\mathrm{4}{m}+\mathrm{10}}&\hline{\mathrm{8}{m}+\mathrm{2}{k}+\mathrm{20}}\\{\left.−\mathrm{3}\right)}&\hline{{m}}&\hline{\mathrm{2}{m}+\mathrm{5}}&\hline{\mathrm{4}{m}+{k}+\mathrm{10}}&\hline{\underset{\mathrm{4}{m}+{k}=−\mathrm{1}} {\mathrm{8}{m}+\mathrm{2}{k}+\mathrm{2}=\mathrm{0}}}\\{}&\hline{}&\hline{−\mathrm{3}{m}}&\hline{\mathrm{3}{m}−\mathrm{15}}&\hline{}\\{}&\hline{{m}}&\hline{−{m}+\mathrm{5}}&\hline{\mathrm{7}{m}+{k}−\mathrm{5}=\mathrm{0}}&\hline{}\\\hline\end{array} \\ $$$$\mathrm{4}{m}+{k}=−\mathrm{1} \\ $$$$\mathrm{7}{m}+{k}=\mathrm{5} \\ $$$$\mathrm{3}{m}=\mathrm{6}\Rightarrow{m}=\mathrm{2} \\ $$$${k}=\mathrm{5}−\mathrm{7}{m}=\mathrm{5}−\mathrm{7}\left(\mathrm{2}\right)=−\mathrm{9} \\ $$

Answered by bramlexs22 last updated on 25/Mar/21

method(1)  by Remainder theorem  consider 6−x−x^2  = 0  or x^2 +x−6=0 we get  (x+3)(x−2)=0⇒x=−3, 2  since 6−x−x^2  is a factor of  polynomes f(x) so f(−3) and  f(2) is zeros to f(x).  f(2)=8m+20+2k−18=0  8m+2k=−2→4m+k=−1...(i)    f(−3)=−27m+45−3k−18=0  −27m−3k=−27→9m+k=9...(ii)  eliminate (i)&(ii) gives  5m = 10   { ((m=2)),((k=−9)) :}

$${method}\left(\mathrm{1}\right) \\ $$$${by}\:{Remainder}\:{theorem} \\ $$$${consider}\:\mathrm{6}−{x}−{x}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$${or}\:{x}^{\mathrm{2}} +{x}−\mathrm{6}=\mathrm{0}\:{we}\:{get} \\ $$$$\left({x}+\mathrm{3}\right)\left({x}−\mathrm{2}\right)=\mathrm{0}\Rightarrow{x}=−\mathrm{3},\:\mathrm{2} \\ $$$${since}\:\mathrm{6}−{x}−{x}^{\mathrm{2}} \:{is}\:{a}\:{factor}\:{of} \\ $$$${polynomes}\:{f}\left({x}\right)\:{so}\:{f}\left(−\mathrm{3}\right)\:{and} \\ $$$${f}\left(\mathrm{2}\right)\:{is}\:{zeros}\:{to}\:{f}\left({x}\right). \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{8}{m}+\mathrm{20}+\mathrm{2}{k}−\mathrm{18}=\mathrm{0} \\ $$$$\mathrm{8}{m}+\mathrm{2}{k}=−\mathrm{2}\rightarrow\mathrm{4}{m}+{k}=−\mathrm{1}...\left({i}\right) \\ $$$$ \\ $$$${f}\left(−\mathrm{3}\right)=−\mathrm{27}{m}+\mathrm{45}−\mathrm{3}{k}−\mathrm{18}=\mathrm{0} \\ $$$$−\mathrm{27}{m}−\mathrm{3}{k}=−\mathrm{27}\rightarrow\mathrm{9}{m}+{k}=\mathrm{9}...\left({ii}\right) \\ $$$${eliminate}\:\left({i}\right)\&\left({ii}\right)\:{gives} \\ $$$$\mathrm{5}{m}\:=\:\mathrm{10}\: \begin{cases}{{m}=\mathrm{2}}\\{{k}=−\mathrm{9}}\end{cases} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com