Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136806 by mnjuly1970 last updated on 26/Mar/21

Answered by Dwaipayan Shikari last updated on 26/Mar/21

2∫_0 ^∞ ((sin((1/x^3 )))/( (x)^(1/3) ))dx           (1/x^3 )=u⇒−(3/x^4 )=(du/dx)  =(2/3)∫_0 ^∞ x^(4−(1/3)) sin(u)du  =(2/3)∫_0 ^∞ ((sin(u))/u^((11)/9) )du=(π/(3Γ(((11)/9))sin(((11π)/(18)))))  ∫_0 ^∞ ((sin(u))/u^m )du=(1/(Γ(m)))∫_0 ^∞ ∫_0 ^∞ e^(−ut) t^(m−1) sin(u)dtdu  =(1/(2iΓ(m)))∫_0 ^∞ (t^(m−1) /(t−i))−(t^(m−1) /(t+i))dt=(1/(Γ(m)))∫_0 ^∞ (t^(m−1) /(t^2 +1))dt  =(1/(2Γ(m)))∫_0 ^∞ (u^((m/2)−1) /((u+1)^((m/2)+1−(m/2)) ))du=(π/(2Γ(m)sin(((mπ)/2))))

$$\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left(\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)}{\:\sqrt[{\mathrm{3}}]{{x}}}{dx}\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }={u}\Rightarrow−\frac{\mathrm{3}}{{x}^{\mathrm{4}} }=\frac{{du}}{{dx}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{4}−\frac{\mathrm{1}}{\mathrm{3}}} {sin}\left({u}\right){du} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({u}\right)}{{u}^{\frac{\mathrm{11}}{\mathrm{9}}} }{du}=\frac{\pi}{\mathrm{3}\Gamma\left(\frac{\mathrm{11}}{\mathrm{9}}\right){sin}\left(\frac{\mathrm{11}\pi}{\mathrm{18}}\right)} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({u}\right)}{{u}^{\boldsymbol{{m}}} }{du}=\frac{\mathrm{1}}{\Gamma\left({m}\right)}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−{ut}} {t}^{{m}−\mathrm{1}} {sin}\left({u}\right){dtdu} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}\Gamma\left({m}\right)}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{m}−\mathrm{1}} }{{t}−{i}}−\frac{{t}^{{m}−\mathrm{1}} }{{t}+{i}}{dt}=\frac{\mathrm{1}}{\Gamma\left({m}\right)}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{m}−\mathrm{1}} }{{t}^{\mathrm{2}} +\mathrm{1}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\Gamma\left({m}\right)}\int_{\mathrm{0}} ^{\infty} \frac{{u}^{\frac{{m}}{\mathrm{2}}−\mathrm{1}} }{\left({u}+\mathrm{1}\overset{\frac{{m}}{\mathrm{2}}+\mathrm{1}−\frac{{m}}{\mathrm{2}}} {\right)}}{du}=\frac{\pi}{\mathrm{2}\Gamma\left({m}\right){sin}\left(\frac{{m}\pi}{\mathrm{2}}\right)} \\ $$

Commented by mnjuly1970 last updated on 26/Mar/21

thank you so much...

$${thank}\:{you}\:{so}\:{much}... \\ $$

Commented by Dwaipayan Shikari last updated on 26/Mar/21

I had a typo. Kindly recheck!

$${I}\:{had}\:{a}\:{typo}.\:{Kindly}\:{recheck}! \\ $$

Answered by Ar Brandon last updated on 26/Mar/21

∅=∫_(−∞) ^∞ ((sin(x^(−3) ))/( (x)^(1/3) ))dx=2∫_0 ^∞ x^(−(1/3)) sin(x^(−3) )dx     =2∙(1/(∣−3∣))∙(π/(2Γ(1−((−(1/3)+1)/(−3)))sin[(1−((−(1/3)+1)/(−3)))(π/2)]))     =(1/3)∙(π/(Γ(((11)/9))sin(((11)/(18))π)))

$$\emptyset=\int_{−\infty} ^{\infty} \frac{\mathrm{sin}\left(\mathrm{x}^{−\mathrm{3}} \right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\mathrm{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{sin}\left(\mathrm{x}^{−\mathrm{3}} \right)\mathrm{dx} \\ $$$$\:\:\:=\mathrm{2}\centerdot\frac{\mathrm{1}}{\mid−\mathrm{3}\mid}\centerdot\frac{\pi}{\mathrm{2}\Gamma\left(\mathrm{1}−\frac{−\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{1}}{−\mathrm{3}}\right)\mathrm{sin}\left[\left(\mathrm{1}−\frac{−\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{1}}{−\mathrm{3}}\right)\frac{\pi}{\mathrm{2}}\right]} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}\centerdot\frac{\pi}{\Gamma\left(\frac{\mathrm{11}}{\mathrm{9}}\right)\mathrm{sin}\left(\frac{\mathrm{11}}{\mathrm{18}}\pi\right)} \\ $$

Commented by mnjuly1970 last updated on 26/Mar/21

  grateful...

$$\:\:{grateful}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com