Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 136827 by otchereabdullai@gmail.com last updated on 26/Mar/21

Find the maximum and minimum  values of:   1) y=5sinx 2cosx  2) y=sin^2 x+3cos^2 x

Findthemaximumandminimumvaluesof:1)y=5sinx2cosx2)y=sin2x+3cos2x

Commented by mr W last updated on 26/Mar/21

do you mean y=5 sin x+2 cos x ?  if yes, then  y=5 sin x+2 cos x  y=(√(5^2 +2^2 ))((5/( (√(5^2 +2^2 )))) sin x+(2/( (√(5^2 +2^2 )))) cos x)  y=(√(5^2 +2^2 ))(cos α sin x+sin α cos x)  y=(√(29)) sin(x+α) with α=tan^(−1) (2/5)  ⇒y_(min) =−(√(29))  ⇒y_(max) =(√(29))

doyoumeany=5sinx+2cosx?ifyes,theny=5sinx+2cosxy=52+22(552+22sinx+252+22cosx)y=52+22(cosαsinx+sinαcosx)y=29sin(x+α)withα=tan125ymin=29ymax=29

Commented by otchereabdullai@gmail.com last updated on 27/Mar/21

Thanks alot prof  what of if we look at the question this  way    y=5sinx2cosx

Thanksalotprofwhatofifwelookatthequestionthiswayy=5sinx2cosx

Commented by mr W last updated on 27/Mar/21

y=5 sin x ×2 cos x  y=5 sin 2x  y_(min) =−5  y_(max) =5

y=5sinx×2cosxy=5sin2xymin=5ymax=5

Commented by otchereabdullai@gmail.com last updated on 27/Mar/21

thank you prof

thankyouprof

Answered by bramlexs22 last updated on 26/Mar/21

(2) y=sin^2 x+3−3sin^2 x  y =3−2sin^2 x   we know that 0 ≤sin^2 x≤1  so −2≤−2sin^2 x ≤ 0  ⇔ 3−2≤3−2sin^2 x ≤ 3+0  ⇒1 ≤ y ≤ 3   { ((min=1)),((max=3)) :}

(2)y=sin2x+33sin2xy=32sin2xweknowthat0sin2x1so22sin2x03232sin2x3+01y3{min=1max=3

Commented by otchereabdullai@gmail.com last updated on 27/Mar/21

thanks for the help sir!

thanksforthehelpsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com