Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 136885 by BHOOPENDRA last updated on 27/Mar/21

Answered by bramlexs22 last updated on 27/Mar/21

λ^3 −(trace A)λ^2 +  (((minor of the terms)),((on the leading diag A )) )λ−det(A)=0  λ^3 −3λ^2 +( determinant (((1  2)),((2  1)))+ determinant (((1   0)),((1   1)))+ determinant (((  1     2)),((−1   1))))λ−3 =0  λ^3 −3λ^2 +λ−3 = 0  by Caley−Hamilton teorem  A^3 −3A^2 +A−3I=0  multiply by A^(−1)     A^2 −3A+I−3A^(−1) =0   3A^(−1)  = A^2 −3A+I   3A^(−1) = A(A−3I)+I   3A^(−1) =  (((−4     −2     4)),((   3         0     −2)),((−3        0       2)) ) +  (((1   0   0)),((0   1   0)),((0   0   1)) )   3A^(−1) =  (((−3     −2       4)),((  3          1       −2)),((−3       0          3)) )   A^(−1) = (1/3) (((−3     −2       4)),((    3         1      −2)),((−3        0          3)) )

λ3(traceA)λ2+(minorofthetermsontheleadingdiagA)λdet(A)=0λ33λ2+(|1221|+|1011|+|1211|)λ3=0λ33λ2+λ3=0byCaleyHamiltonteoremA33A2+A3I=0multiplybyA1A23A+I3A1=03A1=A23A+I3A1=A(A3I)+I3A1=(424302302)+(100010001)3A1=(324312303)A1=13(324312303)

Commented by BHOOPENDRA last updated on 27/Mar/21

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com