Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 136897 by mohammad17 last updated on 27/Mar/21

Answered by Olaf last updated on 27/Mar/21

  f(z) = e^(i(π/4)) z+(1−2i)  f(z)−z_0  = e^(i(π/4)) (z−z_0 )+(e^(i(π/4)) −1)z_0 +(1−2i)  We choose z_0  such as : (e^(i(π/4)) −1)z_0 +(1−2i) = 0  ⇒ z_0  = −((1−2i)/(e^(i(π/4)) −1)) = −((1−2i)/((1/( (√2)))−1+(i/( (√2))))) =−(((√2)+(2−(√2))i)/(2−(√2)))  z_0  = − (((1/( (√2)))−1−(√2)+(2−(√2)−(1/( (√2))))i)/(2−(√2))) = ((3/2)+(√2))−(((√2)−1)/2)i  f(z)−z_0  = e^(i(π/4)) (z−z_0 )  The transformation W is the rotation  angle (π/4) around the point z_0 .  The area A = {0≤x≤2, 0≤y≤1} is a  rectangle O,A(2),B(2+i),C(i)  The image A′ of A by W is another  rectangle O′A′B′C′  O′ = f(O) = 1−2i  A′ = f(A) = 2×(1/( (√2)))(1+i)+(1−2i) = (√2)+1+((√2)−2)i  B′ = f(B) = (2+i)(1/( (√2)))(1+i)+(1−2i) = 1+(1/( (√2)))+((3/( (√2)))−2)i  C′ = f(C) = i×(1/( (√2)))(1+i)+(1−2i) = 1−(1/( (√2)))+((1/( (√2)))−2)i

$$ \\ $$$${f}\left({z}\right)\:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} {z}+\left(\mathrm{1}−\mathrm{2}{i}\right) \\ $$$${f}\left({z}\right)−{z}_{\mathrm{0}} \:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \left({z}−{z}_{\mathrm{0}} \right)+\left({e}^{{i}\frac{\pi}{\mathrm{4}}} −\mathrm{1}\right){z}_{\mathrm{0}} +\left(\mathrm{1}−\mathrm{2}{i}\right) \\ $$$$\mathrm{We}\:\mathrm{choose}\:{z}_{\mathrm{0}} \:\mathrm{such}\:\mathrm{as}\::\:\left({e}^{{i}\frac{\pi}{\mathrm{4}}} −\mathrm{1}\right){z}_{\mathrm{0}} +\left(\mathrm{1}−\mathrm{2}{i}\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{z}_{\mathrm{0}} \:=\:−\frac{\mathrm{1}−\mathrm{2}{i}}{{e}^{{i}\frac{\pi}{\mathrm{4}}} −\mathrm{1}}\:=\:−\frac{\mathrm{1}−\mathrm{2}{i}}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\mathrm{1}+\frac{{i}}{\:\sqrt{\mathrm{2}}}}\:=−\frac{\sqrt{\mathrm{2}}+\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){i}}{\mathrm{2}−\sqrt{\mathrm{2}}} \\ $$$${z}_{\mathrm{0}} \:=\:−\:\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\mathrm{1}−\sqrt{\mathrm{2}}+\left(\mathrm{2}−\sqrt{\mathrm{2}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right){i}}{\mathrm{2}−\sqrt{\mathrm{2}}}\:=\:\left(\frac{\mathrm{3}}{\mathrm{2}}+\sqrt{\mathrm{2}}\right)−\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}}{i} \\ $$$${f}\left({z}\right)−{z}_{\mathrm{0}} \:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \left({z}−{z}_{\mathrm{0}} \right) \\ $$$$\mathrm{The}\:\mathrm{transformation}\:\mathrm{W}\:\mathrm{is}\:\mathrm{the}\:\mathrm{rotation} \\ $$$$\mathrm{angle}\:\frac{\pi}{\mathrm{4}}\:\mathrm{around}\:\mathrm{the}\:\mathrm{point}\:{z}_{\mathrm{0}} . \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathcal{A}\:=\:\left\{\mathrm{0}\leqslant{x}\leqslant\mathrm{2},\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\right\}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{rectangle}\:\mathrm{O},\mathrm{A}\left(\mathrm{2}\right),\mathrm{B}\left(\mathrm{2}+{i}\right),\mathrm{C}\left({i}\right) \\ $$$$\mathrm{The}\:\mathrm{image}\:\mathcal{A}'\:\mathrm{of}\:\mathcal{A}\:\mathrm{by}\:\mathrm{W}\:\mathrm{is}\:\mathrm{another} \\ $$$$\mathrm{rectangle}\:\mathrm{O}'\mathrm{A}'\mathrm{B}'\mathrm{C}' \\ $$$$\mathrm{O}'\:=\:{f}\left(\mathrm{O}\right)\:=\:\mathrm{1}−\mathrm{2}{i} \\ $$$$\mathrm{A}'\:=\:{f}\left(\mathrm{A}\right)\:=\:\mathrm{2}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right)+\left(\mathrm{1}−\mathrm{2}{i}\right)\:=\:\sqrt{\mathrm{2}}+\mathrm{1}+\left(\sqrt{\mathrm{2}}−\mathrm{2}\right){i} \\ $$$$\mathrm{B}'\:=\:{f}\left(\mathrm{B}\right)\:=\:\left(\mathrm{2}+{i}\right)\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right)+\left(\mathrm{1}−\mathrm{2}{i}\right)\:=\:\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\left(\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}−\mathrm{2}\right){i} \\ $$$$\mathrm{C}'\:=\:{f}\left(\mathrm{C}\right)\:=\:{i}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right)+\left(\mathrm{1}−\mathrm{2}{i}\right)\:=\:\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\mathrm{2}\right){i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com