Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 136899 by BHOOPENDRA last updated on 27/Mar/21

Answered by Olaf last updated on 28/Mar/21

3.  f(x) = x^2 , −2≤x≤2  a_0 (f) = (1/T)∫_(−(T/2)) ^(+(T/2)) f(x)dx  a_0 (f) = (1/4)∫_(−2) ^(+2) x^2 dx = (1/4)[(x^3 /3)]_(−2) ^(+2)  = (4/3)  a_n (f) = (2/T)∫_(−(T/2)) ^(+(T/2)) f(x)cos(((2πnx)/T))dx  a_n (f) = (1/2)∫_(−2) ^(+2) x^2 cos(((πnx)/4))dx  a_n (f) = (1/2)[((((2π^2 n^2 x^2 −16)sin(((πnx)/2))+8πnxcos(((πnx)/2)))/(π^3 n^3 ))]_(−2) ^(+2)   a_n (f) = ((4(−1)^n )/(π^2 n^2 ))  b_n (f) = (2/T)∫_(−(T/2)) ^(+(T/2)) f(x)sin(((2πnx)/T))dx  b_n (f) = 0 because f is even  f(x) = a_0 +Σ_(n=1) ^∞ a_n cos(((2πnx)/T))  f(x) = (4/3)+(4/π^2 )Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(((πnx)/2))

3.f(x)=x2,2x2a0(f)=1TT2+T2f(x)dxa0(f)=142+2x2dx=14[x33]2+2=43an(f)=2TT2+T2f(x)cos(2πnxT)dxan(f)=122+2x2cos(πnx4)dxan(f)=12[((2π2n2x216)sin(πnx2)+8πnxcos(πnx2)π3n3]2+2an(f)=4(1)nπ2n2bn(f)=2TT2+T2f(x)sin(2πnxT)dxbn(f)=0becausefisevenf(x)=a0+n=1ancos(2πnxT)f(x)=43+4π2n=1(1)nn2cos(πnx2)

Commented by greg_ed last updated on 28/Mar/21

i like it !

ilikeit!

Answered by Olaf last updated on 28/Mar/21

  4.  f(x) =  { ((2+x, −2≤x≤0)),((2−x, 0 ≤x≤2)) :}  or f(x) = 2−∣x∣, −2≤x≤2  a_0 (f) = (1/T)∫_(−(T/2)) ^(+(T/2)) f(x)dx  a_0 (f) = (1/4)∫_(−2) ^(+2) (2−∣x∣)dx  a_0 (f) = (1/4)∫_(−2) ^0 (2+x)dx+(1/4)∫_0 ^2 (2−x)dx  a_0 (f) = (1/4)[2x+(x^2 /2)]_(−2) ^0 +(1/4)[2x−(x^2 /2)]_0 ^2   a_0 (f) = (1/2)+(1/2) = 1  a_n (f) = (2/T)∫_(−(T/2)) ^(+(T/2)) f(x)cos(((2πnx)/T))dx  a_n (f) = (1/2)∫_(−2) ^(+0) (2+x)cos(((πnx)/2))dx  +(1/2)∫_0 ^2 (2−x)cos(((πnx)/2))dx  a_n (f) = ∫_(−2) ^(+2) cos(((πnx)/2))dx−∫_0 ^2 xcos(((πnx)/2))dx  a_n (f) = (4/(π^2 n^2 ))[(−1)^n −1]  a_(2n) (f) = 0 and a_(2n+1) (f) = −(8/(π^2 (2n+1)^2 ))  b_n (f) = (2/T)∫_(−(T/2)) ^(+(T/2)) f(x)cos(((2πnx)/T))dx  b_n (f) = (1/2)∫_(−2) ^(+0) (2+x)sin(((πnx)/2))dx  +(1/2)∫_0 ^2 (2−x)sin(((πnx)/2))dx  b_n (f) = ∫_(−2) ^(+2) sin(((πnx)/2))dx = 0  f(x) = a_0 +Σ_(n=1) ^∞ a_n cos(((πnx)/2))  f(x) = 1−(8/π^2 )Σ_(p=0) ^∞ ((cos(((π(2p+1)x)/2)))/((2p+1)^2 ))

4.f(x)={2+x,2x02x,0x2orf(x)=2x,2x2a0(f)=1TT2+T2f(x)dxa0(f)=142+2(2x)dxa0(f)=1420(2+x)dx+1402(2x)dxa0(f)=14[2x+x22]20+14[2xx22]02a0(f)=12+12=1an(f)=2TT2+T2f(x)cos(2πnxT)dxan(f)=122+0(2+x)cos(πnx2)dx+1202(2x)cos(πnx2)dxan(f)=2+2cos(πnx2)dx02xcos(πnx2)dxan(f)=4π2n2[(1)n1]a2n(f)=0anda2n+1(f)=8π2(2n+1)2bn(f)=2TT2+T2f(x)cos(2πnxT)dxbn(f)=122+0(2+x)sin(πnx2)dx+1202(2x)sin(πnx2)dxbn(f)=2+2sin(πnx2)dx=0f(x)=a0+n=1ancos(πnx2)f(x)=18π2p=0cos(π(2p+1)x2)(2p+1)2

Commented by BHOOPENDRA last updated on 28/Mar/21

thankyou sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com