Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136921 by mnjuly1970 last updated on 27/Mar/21

     evaluation of :: 𝛗=∫_0 ^( 1) ((xln(1+x))/(1+x^2 ))dx    solution:      𝛗=^(I.B.P ) [(1/2)ln(1+x^2 )ln(1+x)]_0 ^1 βˆ’(1/2){∫_0 ^( 1) ((ln(1+x^2 ))/(1+x))dx=𝚽}        𝛗=(1/2)ln^2 (2)βˆ’(1/2) 𝚽 ........βœ“         𝚽=∫_0 ^( 1) ((ln(1+x^2 ))/(1+x))dx =???           h(a)=∫_0 ^( 1) ((ln(1+ax^2 ))/(1+x))dx          hβ€²(a)=∫_0 ^( 1) (βˆ‚/βˆ‚_a )(((ln(1+ax^2 ))/(1+x)))dx           hβ€²(a)=∫_0 ^( 1) (x^2 /((1+x)(1+ax^2 )))dx          hβ€²(a)=(1/(1+a))∫_0 ^( 1) (1/(1+x))dx+(1/(1+a))∫_0 ^( 1) (x/(1+ax^2 ))dxβˆ’(1/(1+a))∫_0 ^( 1) (1/(1+ax^2 ))dx        =(1/(1+a))ln(2)+(1/2).(1/(a(1+a)))ln(1+a)βˆ’((√a)/(a(1+a)))[(tan^(βˆ’1) (x(√a) )]_0 ^1           =((ln(2))/(1+a))+(1/2).(1/(a(1+a))) ln(1+a)βˆ’((√a)/(a(1+a)))tan^(βˆ’1) ((√a) )       ∫_0 ^( 1) hβ€²(a)da=ln^2 (2)+(1/2)∫_0 ^( 1) ((ln(1+a))/a)daβˆ’(1/4)ln^2 (2)βˆ’((Ο€^2 /(16)))                       =ln^2 (2)+(Ο€^2 /(24))βˆ’(1/4)ln^2 (2)βˆ’(Ο€^2 /(16))        =(3/4)ln^2 (2)βˆ’(Ο€^2 /(48))            ∴  h(1)=𝚽=(3/4)ln^2 (2)βˆ’(Ο€^2 /(48))  ..βœ“        𝛗=(1/2)ln^2 (2)βˆ’(3/8)ln^2 (2)+(Ο€^2 /(96))      𝛗=(1/8)ln^2 (2)+(Ο€^2 /(96))

evaluationof::Ο•=∫01xln(1+x)1+x2dxsolution:Ο•=I.B.P[12ln(1+x2)ln(1+x)]01βˆ’12{∫01ln(1+x2)1+xdx=Ξ¦}Ο•=12ln2(2)βˆ’12Ξ¦........βœ“Ξ¦=∫01ln(1+x2)1+xdx=???h(a)=∫01ln(1+ax2)1+xdxhβ€²(a)=∫01βˆ‚βˆ‚a(ln(1+ax2)1+x)dxhβ€²(a)=∫01x2(1+x)(1+ax2)dxhβ€²(a)=11+a∫0111+xdx+11+a∫01x1+ax2dxβˆ’11+a∫0111+ax2dx=11+aln(2)+12.1a(1+a)ln(1+a)βˆ’aa(1+a)[(tanβˆ’1(xa)]01=ln(2)1+a+12.1a(1+a)ln(1+a)βˆ’aa(1+a)tanβˆ’1(a)∫01hβ€²(a)da=ln2(2)+12∫01ln(1+a)adaβˆ’14ln2(2)βˆ’(Ο€216)=ln2(2)+Ο€224βˆ’14ln2(2)βˆ’Ο€216=34ln2(2)βˆ’Ο€248∴h(1)=Ξ¦=34ln2(2)βˆ’Ο€248..βœ“Ο•=12ln2(2)βˆ’38ln2(2)+Ο€296Ο•=18ln2(2)+Ο€296

Answered by mathmax by abdo last updated on 27/Mar/21

Ξ¦=∫_0 ^1  ((log(1+x^2 ))/(1+x))dx  =Ο•(1) with Ο•(t)=∫_0 ^1 ((log(1+tx^2 ))/(1+x))  (t>0)  we have Ο•^β€² (t)=∫_0 ^1 (x^2 /((x+1)(tx^2 +1)))dx =(1/t)∫_0 ^1  ((tx^2 +1βˆ’1)/((x+1)(tx^2 +1)))dx  =(1/t)∫_0 ^1  (dx/(x+1))βˆ’(1/t)∫_0 ^1  (dx/((x+1)(tx^2  +1)))  but ∫_0 ^1  (dx/(x+1))=ln2  let decompose F(x)=(1/((x+1)(tx^2 +1)))=(a/(x+1)) +((bx+c)/(tx^2  +1))  a=(1/(t+1)) , lim_(xβ†’βˆž) xF(x)=0 =a+(b/t) β‡’0=at+b β‡’b=βˆ’(t/(t+1))  F(0)=1=a+c β‡’c=1βˆ’(1/(t+1))=(t/(t+1)) β‡’  F(x)=(1/((t+1)(x+1)))+((βˆ’(t/(t+1))x+(t/(t+1)))/(tx^2  +1))  =(1/(t+1)){(1/(x+1))βˆ’((txβˆ’t)/(tx^2  +1))} β‡’βˆ«_0 ^1  F(x)dx=(1/(t+1)){ln2βˆ’βˆ«_0 ^1  ((txβˆ’t)/(tx^2  +1))dx} and  ∫_0 ^1  ((txβˆ’t)/(tx^2  +1))dx =(1/2)∫_0 ^1  ((2tx)/(tx^2  +1))dxβˆ’βˆ«_0 ^1  (t/(tx^2  +1))dx((√t)x=y)  =(1/2)[ln(tx^2 +1)]_0 ^1  βˆ’βˆ«_0 ^(√t)   (t/(y^2  +1))(dy/( (√t)))  =(1/2)ln(t+1)βˆ’(√t)arctan((√t)) β‡’  Ο•^β€² (t)=((log2)/t)βˆ’(1/(t(t+1))){ln2βˆ’(1/2)log(t+1)+(√t)arctan((√t))}  =((log2)/t)βˆ’((log2)/(t(t+1)))βˆ’((log(t+1))/(t(t+1)))βˆ’(((√t)arctan((√t)))/(t(t+1)))  =((log2)/t)(1βˆ’(1/(t+1)))βˆ’...=((log2)/t).(t/(t+1))βˆ’((log(t+1))/(t(t+1)))βˆ’(((√t)arctan((√t)))/(t(t+1)))  =((log2)/(t+1))βˆ’((1/t)βˆ’(1/(t+1)))log(t+1)βˆ’(((√t)arctan((√t)))/(t(t+1)))  β‡’βˆ«_0 ^1  Ο•^β€² (t)dt =log^2 (2)βˆ’βˆ«_0 ^1  ((log(t+1))/t)dt+∫_0 ^1  ((log(t+1))/(t+1))dt  βˆ’βˆ«_0 ^1  (((√t)arctan((√t)))/(t(t+1)))dt  ∫_0 ^1  ((log(t+1))/t)dt  =[logt.log(t+1)]_0 ^1 βˆ’βˆ«_0 ^1  ((logt)/(t+1))dt  =βˆ’βˆ«_0 ^1  log(t)Ξ£_(n=0) ^∞ (βˆ’1)^n  t^n  dt=βˆ’Ξ£_(n=0) ^∞ (βˆ’1)^n  ∫_0 ^1  t^n  logt dt  U_n =∫_0 ^1  t^n  logt dt =[(t^(n+1) /(n+1))logt]_0 ^1 βˆ’(1/(n+1))∫_0 ^1   t^n  dt =βˆ’(1/((n+1)^2 ))  β‡’βˆ«_0 ^1  ((log(t+1))/t)dt =Ξ£_(n=0) ^∞  (((βˆ’1)^n )/((n+1)^2 )) =βˆ’Ξ£_(n=1) ^∞  (((βˆ’1)^n )/n^2 )  =βˆ’(2^(1βˆ’2) βˆ’1)ΞΎ(2)=βˆ’(βˆ’(1/2)).(Ο€^2 /6)=(Ο€^2 /(12))  ∫_0 ^1  ((log(t+1))/(t+1))dt =[log^2 (t+1)]_0 ^1 βˆ’βˆ«_0 ^1 ((log(t+1))/(t+1))dt β‡’  ∫_0 ^1  ((log(t+1))/(t+1))dt =((ln^2 (2))/2)  J=∫_0 ^1  (((√t) arctan((√t)))/(t(t+1)))dt =_((√t)=y)   ∫_0 ^1  ((yarctany)/(y^2 (y^2 +1)))(2y)dy  =2∫_0 ^1  ((arctan(y))/(y^2  +1))dy =2{ [arctan^2 y]_0 ^1 βˆ’βˆ«_0 ^1  ((arctany)/(y^2  +1))}  =2Γ—(Ο€^2 /(16))βˆ’2∫(...)dy β‡’4∫_0 ^1  ((arctany)/(y^2  +1))dy =(Ο€^2 /8) β‡’  ∫_0 ^1  ((arctany)/(y^2  +1))dy =(Ο€^2 /(32)) β‡’  Ξ¦ =Ο•(1)=log^2 (2)βˆ’(Ο€^2 /(12)) +((ln^2 (2))/2)βˆ’(Ο€^2 /(16))=(3/2)ln^2 (2)βˆ’((4Ο€^2 )/(48))βˆ’((3Ο€^2 )/(48))  =(3/2)ln^2 (2)βˆ’((7Ο€^2 )/(48)) ??

Ξ¦=∫01log(1+x2)1+xdx=Ο†(1)withΟ†(t)=∫01log(1+tx2)1+x(t>0)wehaveΟ†β€²(t)=∫01x2(x+1)(tx2+1)dx=1t∫01tx2+1βˆ’1(x+1)(tx2+1)dx=1t∫01dxx+1βˆ’1t∫01dx(x+1)(tx2+1)but∫01dxx+1=ln2letdecomposeF(x)=1(x+1)(tx2+1)=ax+1+bx+ctx2+1a=1t+1,limxβ†’βˆžxF(x)=0=a+btβ‡’0=at+bβ‡’b=βˆ’tt+1F(0)=1=a+cβ‡’c=1βˆ’1t+1=tt+1β‡’F(x)=1(t+1)(x+1)+βˆ’tt+1x+tt+1tx2+1=1t+1{1x+1βˆ’txβˆ’ttx2+1}β‡’βˆ«01F(x)dx=1t+1{ln2βˆ’βˆ«01txβˆ’ttx2+1dx}and∫01txβˆ’ttx2+1dx=12∫012txtx2+1dxβˆ’βˆ«01ttx2+1dx(tx=y)=12[ln(tx2+1)]01βˆ’βˆ«0tty2+1dyt=12ln(t+1)βˆ’tarctan(t)β‡’Ο†β€²(t)=log2tβˆ’1t(t+1){ln2βˆ’12log(t+1)+tarctan(t)}=log2tβˆ’log2t(t+1)βˆ’log(t+1)t(t+1)βˆ’tarctan(t)t(t+1)=log2t(1βˆ’1t+1)βˆ’...=log2t.tt+1βˆ’log(t+1)t(t+1)βˆ’tarctan(t)t(t+1)=log2t+1βˆ’(1tβˆ’1t+1)log(t+1)βˆ’tarctan(t)t(t+1)β‡’βˆ«01Ο†β€²(t)dt=log2(2)βˆ’βˆ«01log(t+1)tdt+∫01log(t+1)t+1dtβˆ’βˆ«01tarctan(t)t(t+1)dt∫01log(t+1)tdt=[logt.log(t+1)]01βˆ’βˆ«01logtt+1dt=βˆ’βˆ«01log(t)βˆ‘n=0∞(βˆ’1)ntndt=βˆ’βˆ‘n=0∞(βˆ’1)n∫01tnlogtdtUn=∫01tnlogtdt=[tn+1n+1logt]01βˆ’1n+1∫01tndt=βˆ’1(n+1)2β‡’βˆ«01log(t+1)tdt=βˆ‘n=0∞(βˆ’1)n(n+1)2=βˆ’βˆ‘n=1∞(βˆ’1)nn2=βˆ’(21βˆ’2βˆ’1)ΞΎ(2)=βˆ’(βˆ’12).Ο€26=Ο€212∫01log(t+1)t+1dt=[log2(t+1)]01βˆ’βˆ«01log(t+1)t+1dtβ‡’βˆ«01log(t+1)t+1dt=ln2(2)2J=∫01tarctan(t)t(t+1)dt=t=y∫01yarctanyy2(y2+1)(2y)dy=2∫01arctan(y)y2+1dy=2{[arctan2y]01βˆ’βˆ«01arctanyy2+1}=2Γ—Ο€216βˆ’2∫(...)dyβ‡’4∫01arctanyy2+1dy=Ο€28β‡’βˆ«01arctanyy2+1dy=Ο€232β‡’Ξ¦=Ο†(1)=log2(2)βˆ’Ο€212+ln2(2)2βˆ’Ο€216=32ln2(2)βˆ’4Ο€248βˆ’3Ο€248=32ln2(2)βˆ’7Ο€248??

Terms of Service

Privacy Policy

Contact: info@tinkutara.com