Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136943 by Mathspace last updated on 28/Mar/21

find ∫_0 ^∞  e^(−ax) ∣sin(bx)∣ dx  a>0 and b>0

find0eaxsin(bx)dx a>0andb>0

Answered by mathmax by abdo last updated on 30/Mar/21

Φ=∫_0 ^∞  e^(−ax) ∣sin(bx)∣dx ⇒Φ=_(bx=t)  ∫_0 ^∞  e^(−(a/b)t) ∣sint∣(dt/b)  =(1/b) Σ_(n=0) ^∞  ∫_(nπ) ^((n+1)π)  e^(−((at)/b)) ∣sint∣ dt  =_(t=nπ +y)   (1/b)Σ_(n=0) ^∞  ∫^π _0  e^(−(a/b)(nπ+y)) ∣sin(nπ+y)∣ dy  =(1/b)Σ_(n=0) ^∞ e^(−((naπ)/b))  ∫_0 ^π   e^(−((ay)/b))  siny dy  let (a/b)=λ ⇒  Φ=(1/b) Σ_(n=0) ^∞  e^(−nλπ)  .∫_0 ^π  e^(−λy)  siny dy we have  ∫_0 ^π  e^(−λy)  siny dy =Im(∫_0 ^π  e^(−λy+iy) dy) and  ∫_0 ^π  e^((−λ+i)y)   dy =[(1/(−λ+i))e^((−λ+i)y) ]_0 ^π  =((−1)/(λ−i)){e^((−λ+i)π) −1}  =((−(λ+i))/(1+λ^2 )){− e^(−λπ) −1} =(((λ+i)(e^(−λπ) +1))/(1+λ^2 ))  ⇒∫_0 ^π  e^(−λy)  siny dy =((1+e^(−λπ) )/(1+λ^2 )) ⇒  Φ =((1+e^(−λπ) )/(b(1+λ^2 )))Σ_(n=0) ^∞  (e^(−λπ) )^n  =((1+e^(−λπ) )/(b(1+λ^2 )))×(1/(1−e^(−λπ) )) ⇒  Φ =((1+e^(−((aπ)/b)) )/(b(1−e^(−((aπ)/b)) )(1+(a^2 /b^2 )))) ⇒Φ=(b/(a^2 +b^2 ))×((1+e^(−((aπ)/b)) )/(1−e^(−((aπ)/b)) ))

Φ=0eaxsin(bx)dxΦ=bx=t0eabtsintdtb =1bn=0nπ(n+1)πeatbsintdt =t=nπ+y1bn=00πeab(nπ+y)sin(nπ+y)dy =1bn=0enaπb0πeaybsinydyletab=λ Φ=1bn=0enλπ.0πeλysinydywehave 0πeλysinydy=Im(0πeλy+iydy)and 0πe(λ+i)ydy=[1λ+ie(λ+i)y]0π=1λi{e(λ+i)π1} =(λ+i)1+λ2{eλπ1}=(λ+i)(eλπ+1)1+λ2 0πeλysinydy=1+eλπ1+λ2 Φ=1+eλπb(1+λ2)n=0(eλπ)n=1+eλπb(1+λ2)×11eλπ Φ=1+eaπbb(1eaπb)(1+a2b2)Φ=ba2+b2×1+eaπb1eaπb

Terms of Service

Privacy Policy

Contact: info@tinkutara.com