Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 136966 by Ñï= last updated on 28/Mar/21

unsolved question.......  ∫_0 ^∞ (cos (x^2 )−cos x)(dx/x)=(γ/2)

unsolvedquestion.......0(cos(x2)cosx)dxx=γ2

Answered by mathmax by abdo last updated on 29/Mar/21

i think this integral is divergent!

ithinkthisintegralisdivergent!

Commented by Ñï= last updated on 29/Mar/21

I(a,p)=∫_0 ^∞ x^p (((sin (ax^2 ))/x^2 )−((sin (ax))/x))dx=∫_0 ^∞ x^(p−2) sin (ax^2 )dx−∫_0 ^∞ x^(p−1) sin (ax)dx  =(1/2)∫_0 ^∞ u^((p/2)−(3/2)) sin (au)du−∫_0 ^∞ x^(p−1) sin (ax)dx  =(1/2)M_(((p/2)−(1/2),x)) (sin (ax))−M_((p,x)) (sin (ax))  M_((p,x)) (sin (ax))=a^(−p) M_((p,x)) (sin x)=a^(−p) Γ(p)sin (((pπ)/2))  I(a,p)=(1/2)a^(−(p/2)+(1/2)) Γ(((p−1)/2))sin ((π/2)(((p−1)/2)))−a^(−p) Γ(p)sin (((pπ)/2))     ;(p>−1,a>0)  ∫_0 ^∞ (cos (x^2 )−cos x)(dx/x)=lim_(p→−1) lim_(a→1) ((dI(a,p))/da)  =lim_(p→−1) lim_(a→1) (1/2)a^(−p−1) {−a^((p+1)/2) sin (((p−1)/4)π)Γ(((p+1)/2))+2sin (((pπ)/2))Γ(p+1)}  =lim_(p→−1) (1/2){−sin (((p−1)/4)π)Γ(((p+1)/2))+2sin (((pπ)/2))Γ(p+1)}  =lim_(p→−1) (1/2){−sin (((p−1)/4)π)((2/(p+1))−γ+o(1))+2sin (((pπ)/2))((1/(p+1))−γ+o(1))}  =(1/2)(−γ+2γ)=(γ/2)  I still  dont understand ∙∙∙,Expect for Mr 1970′s answer,  after all,he gives this question.

I(a,p)=0xp(sin(ax2)x2sin(ax)x)dx=0xp2sin(ax2)dx0xp1sin(ax)dx=120up232sin(au)du0xp1sin(ax)dx=12M(p212,x)(sin(ax))M(p,x)(sin(ax))M(p,x)(sin(ax))=apM(p,x)(sinx)=apΓ(p)sin(pπ2)I(a,p)=12ap2+12Γ(p12)sin(π2(p12))apΓ(p)sin(pπ2);(p>1,a>0)0(cos(x2)cosx)dxx=limp1lima1dI(a,p)da=limp1lima112ap1{ap+12sin(p14π)Γ(p+12)+2sin(pπ2)Γ(p+1)}=limp112{sin(p14π)Γ(p+12)+2sin(pπ2)Γ(p+1)}=limp112{sin(p14π)(2p+1γ+o(1))+2sin(pπ2)(1p+1γ+o(1))}=12(γ+2γ)=γ2Istilldontunderstand,ExpectforMr1970sanswer,afterall,hegivesthisquestion.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com