All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 136968 by Eric002 last updated on 28/Mar/21
1)∫8x24−x2dx2)∫x−62x2−5x+3
Answered by EDWIN88 last updated on 28/Mar/21
(1)∫8x34x−2−1dx=∫8x−34x−2−1dxsetu2=4x−2−12udu=−8x−3dxE=−2∫uudu=−2u+cE=−24x−2−1+c=−24−x2x2+cE=−24−x2x+c
(2)E=∫x−6(2x+1)(x−3)dxPartialfractionx−62x2−5x+3=p2x+1+qx−3where{p=[x−6x−3]x=−12=−13−7=137q=[x−62x+1]x=3=−37E=137∫dx2x+1−37∫dxx−3E=1314ln∣2x+1∣−37ln∣x−3∣+c
Answered by mathmax by abdo last updated on 28/Mar/21
1)I=∫8x24−x2dx⇒I=x=2sinθ∫84sin2θ.2cosθ(2cosθ)dθ=4∫dθsin2θ=8∫dθ1−cos(2θ)=2θ=t8∫dt2(1−cost)=4∫dt1−cost=tan(t2)=y4∫2dy(1+y2)(1−1−y21+y2)=8∫dy1+y2−1+y2=4∫dyy2=−4y+C=−4tan(t2)+C=−4tan(θ)+C=−4tan(arcsin(x2))+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com