Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136968 by Eric002 last updated on 28/Mar/21

1)∫(8/(x^2 (√(4−x^2 ))))dx  2)∫((x−6 )/(2x^2 −5x+3))

1)8x24x2dx2)x62x25x+3

Answered by EDWIN88 last updated on 28/Mar/21

(1)∫ (8/(x^3  (√(4x^(−2) −1)))) dx = ∫ ((8x^(−3) )/( (√(4x^(−2) −1)))) dx  set u^2  = 4x^(−2) −1   2u du =−8x^(−3)  dx  E = −2∫ (u/u) du =−2u + c   E=−2 (√(4x^(−2) −1)) + c = −2(√((4−x^2 )/x^2 )) + c  E = −((2(√(4−x^2 )))/x) + c

(1)8x34x21dx=8x34x21dxsetu2=4x212udu=8x3dxE=2uudu=2u+cE=24x21+c=24x2x2+cE=24x2x+c

Answered by EDWIN88 last updated on 28/Mar/21

(2)E=∫ ((x−6)/((2x+1)(x−3))) dx   Partial fraction  ((x−6)/(2x^2 −5x+3)) = (p/(2x+1)) + (q/(x−3))  where  { ((p=[((x−6)/(x−3)) ] _(x=−(1/2)) = ((−13)/(−7))=((13)/7))),((q=[((x−6)/(2x+1)) ]_(x=3) =−(3/7))) :}  E=((13)/7)∫ (dx/(2x+1)) −(3/7)∫ (dx/(x−3))  E=((13)/(14)) ln ∣2x+1∣−(3/7) ln ∣x−3∣ + c

(2)E=x6(2x+1)(x3)dxPartialfractionx62x25x+3=p2x+1+qx3where{p=[x6x3]x=12=137=137q=[x62x+1]x=3=37E=137dx2x+137dxx3E=1314ln2x+137lnx3+c

Answered by mathmax by abdo last updated on 28/Mar/21

1) I=∫ (8/(x^2 (√(4−x^2 ))))dx ⇒I=_(x=2sinθ)   ∫  (8/(4sin^2 θ.2cosθ))(2cosθ)dθ  =4∫ (dθ/(sin^2 θ)) =8 ∫ (dθ/(1−cos(2θ)))=_(2θ=t)    8∫  (dt/(2(1−cost)))=4∫ (dt/(1−cost))  =_(tan((t/2))=y)    4 ∫  ((2dy)/((1+y^2 )(1−((1−y^2 )/(1+y^2 )))))=8∫  (dy/(1+y^2 −1+y^2 )) =4∫ (dy/y^2 )  =−(4/y)+C =−(4/(tan((t/2))))+C =−(4/(tan(θ)))+C=−(4/(tan(arcsin((x/2)))))+C

1)I=8x24x2dxI=x=2sinθ84sin2θ.2cosθ(2cosθ)dθ=4dθsin2θ=8dθ1cos(2θ)=2θ=t8dt2(1cost)=4dt1cost=tan(t2)=y42dy(1+y2)(11y21+y2)=8dy1+y21+y2=4dyy2=4y+C=4tan(t2)+C=4tan(θ)+C=4tan(arcsin(x2))+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com